首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of stimulus duration on auditory evoked potentials (AEPs) was examined for tones varying randomly in duration, location, and frequency in an auditory selective attention task. Stimulus duration effects were isolated as duration difference waves by subtracting AEPs to short duration tones from AEPs to longer duration tones of identical location, frequency and rise time. This analysis revealed that AEP components generally increased in amplitude and decreased in latency with increments in signal duration, with evidence of longer temporal integration times for lower frequency tones. Different temporal integration functions were seen for different N1 subcomponents. The results suggest that different auditory cortical areas have different temporal integration times, and that these functions vary as a function of tone frequency.  相似文献   

2.
Brain resonance phenomena and induced rhythms in the brain recently gained importance in electroencephalographic, magnetoencephalographic and cellular studies (Ba\c sar and Bullock 1992). It was hypothesized that evoked potentials are superpositions of induced rhythms caused by resonance phenomena in neural populations (Ba\c sar et al. 1992). According to Ba\c sar (1972), such resonance phenomena are reflected in the main peaks of the amplitude frequency characteristics computed from EEG responses. The present study is based on a frequency domain approach for the evaluation of topography- and modality-dependent properties of oscillatory brain responses. EEG and evoked potentials were recorded from vertex, parietal and occipital scalp locations in 24 volunteers. Two combined methods were applied: (1) amplitude frequency characteristics were computed from the transient evoked responses, and (2) frequency components of the transient responses were obtained by adaptive digital filtering. Our main goal was to investigate theta (4--7 Hz) and alpha (8--15 Hz) response components. (1) Amplitude frequency characteristics. Auditory stimuli elicited theta-alpha compound responses in the 4--11 Hz frequency band (e.g. typical peaking frequency around 7 Hz for vertex recordings). Visual stimuli elicited alpha responses (e.g. typical peaking frequency for vertex recordings around 9--12 Hz). Frequency maxima for visual stimuli thus had main peaks at higher frequency values than frequency maxima for auditory stimuli. (2) Digital filtering confirmed these results: for vertex recordings, theta vs. alpha response amplitudes were 9 vs 6 for auditory stimuli and 5 vs 5 for visual stimuli, thus confirming a shift towards higher frequencies, i.e. a more prominent contribution of the alpha range, in the case of visual stimulation. We hypothesize that these properties might reflect site- and modality-specific features of stimulus encoding in the brain in which resonance properties of neuron populations are involved. Furthermore we emphasize the utility of the systems theory approach for a better understanding of brain function by means of EPs. Received: 25 February 1994 / Accepted in revised form: 5 August 1994  相似文献   

3.
IF Lin  M Kashino 《PloS one》2012,7(7):e41661
In auditory scene analysis, population separation and temporal coherence have been proposed to explain how auditory features are grouped together and streamed over time. The present study investigated whether these two theories can be applied to tactile streaming and whether temporal coherence theory can be applied to crossmodal streaming. The results show that synchrony detection between two tones/taps at different frequencies/locations became difficult when one of the tones/taps was embedded in a perceptual stream. While the taps applied to the same location were streamed over time, the taps applied to different locations were not. This observation suggests that tactile stream formation can be explained by population-separation theory. On the other hand, temporally coherent auditory stimuli at different frequencies were streamed over time, but temporally coherent tactile stimuli applied to different locations were not. When there was within-modality streaming, temporally coherent auditory stimuli and tactile stimuli were not streamed over time, either. This observation suggests the limitation of temporal coherence theory when it is applied to perceptual grouping over time.  相似文献   

4.
The phase of cortical oscillations contains rich information and is valuable for encoding sound stimuli. Here we hypothesized that oscillatory phase modulation, instead of amplitude modulation, is a neural correlate of auditory streaming. Our behavioral evaluation provided compelling evidences for the first time that rats are able to organize auditory stream. Local field potentials (LFPs) were investigated in the cortical layer IV or deeper in the primary auditory cortex of anesthetized rats. In response to ABA- sequences with different inter-tone intervals and frequency differences, neurometric functions were characterized with phase locking as well as the band-specific amplitude evoked by test tones. Our results demonstrated that under large frequency differences and short inter-tone intervals, the neurometric function based on stimulus phase locking in higher frequency bands, particularly the gamma band, could better describe van Noorden’s perceptual boundary than the LFP amplitude. Furthermore, the gamma-band neurometric function showed a build-up-like effect within around 3 seconds from sequence onset. These findings suggest that phase locking and amplitude have different roles in neural computation, and support our hypothesis that temporal modulation of cortical oscillations should be considered to be neurophysiological mechanisms of auditory streaming, in addition to forward suppression, tonotopic separation, and multi-second adaptation.  相似文献   

5.
Reduced neural processing of a tone is observed when it is presented after a sound whose spectral range closely frames the frequency of the tone. This observation might be explained by the mechanism of lateral inhibition (LI) due to inhibitory interneurons in the auditory system. So far, several characteristics of bottom up influences on LI have been identified, while the influence of top-down processes such as directed attention on LI has not been investigated. Hence, the study at hand aims at investigating the modulatory effects of focused attention on LI in the human auditory cortex. In the magnetoencephalograph, we present two types of masking sounds (white noise vs. withe noise passing through a notch filter centered at a specific frequency), followed by a test tone with a frequency corresponding to the center-frequency of the notch filter. Simultaneously, subjects were presented with visual input on a screen. To modulate the focus of attention, subjects were instructed to concentrate either on the auditory input or the visual stimuli. More specific, on one half of the trials, subjects were instructed to detect small deviations in loudness in the masking sounds while on the other half of the trials subjects were asked to detect target stimuli on the screen. The results revealed a reduction in neural activation due to LI, which was larger during auditory compared to visual focused attention. Attentional modulations of LI were observed in two post-N1m time intervals. These findings underline the robustness of reduced neural activation due to LI in the auditory cortex and point towards the important role of attention on the modulation of this mechanism in more evaluative processing stages.  相似文献   

6.
Statistical properties of spontaneous firing were studied in 79 single auditory units located in the dorsal medullar (cochlear) nucleus of unanaesthetized curarized marsh frogs (Rana ridibunda). The great majority of these units showed irregular spontaneous activity with mean rates in the range 1–30 spikes · s–1. In 53% of the cells the auto-renewal functions of the spontaneous activity monotonically rose to an asymptotic value, but 41% of the cells produced auto-renewal functions which showed a pronounced peak after a dead-time period. Five low-frequency auditory neurons revealed periodic firing in the absence of controlled stimuli. The preferred period did not correspond to the unit's best frequency but demonstrated a modest correlation with the best modulation frequency of the unit's response to amplitude-modulated tones and with the duration of the after-onset dip in peri-stimulus time histograms.Abbreviations AM amplitude modulation - ARF auto-renewal function - DMN dorsal medullar nucleus - PST peristimulus time - SA spontaneous activity - TID time interval distribution - RMG response modulation gain  相似文献   

7.
Natural sounds often exhibit correlated amplitude modulations at different frequency regions, so-called comodulation. Therefore, the ear might be especially adapted to these kinds of sounds. Two effects have been related to the sensitivity of the auditory system to common modulations across frequency: comodulation detection difference (CDD) and comodulation masking release (CMR). Research on these effects has been done on the psychophysical and on the neurophysiological level in humans and other animals. Until now, models have focused only on one of the effects. In the present study, a simple model based on data from neuronal recordings obtained during CDD experiments with starlings is discussed. This model demonstrates that simple peripheral processing in the ear can go a substantial way to explaining psychophysical signal detection thresholds in response to CDD and CMR stimuli. Moreover, it is largely analytically tractable. The model is based on peripheral processing and incorporates the basic steps frequency filtering, envelope extraction, and compression. Signal detection is performed based on changes in the mean compressed envelope of the filtered stimulus. Comparing the results of the model with data from the literature, the scope of this unifying approach to CDD and CMR is discussed.  相似文献   

8.
The fish auditory system encodes important acoustic stimuli used in social communication, but few studies have examined response properties of central auditory neurons to natural signals. We determined the features and responses of single hindbrain and midbrain auditory neurons to tone bursts and playbacks of conspecific sounds in the soniferous damselfish, Abudefduf abdominalis. Most auditory neurons were either silent or had slow irregular resting discharge rates <20 spikes s−1. Average best frequency for neurons to tone stimuli was ~130 Hz but ranged from 80 to 400 Hz with strong phase-locking. This low-frequency sensitivity matches the frequency band of natural sounds. Auditory neurons were also modulated by playbacks of conspecific sounds with thresholds similar to 100 Hz tones, but these thresholds were lower than that of tones at other test frequencies. Thresholds of neurons to natural sounds were lower in the midbrain than the hindbrain. This is the first study to compare response properties of auditory neurons to both simple tones and complex stimuli in the brain of a recently derived soniferous perciform that lacks accessory auditory structures. These data demonstrate that the auditory fish brain is most sensitive to the frequency and temporal components of natural pulsed sounds that provide important signals for conspecific communication.  相似文献   

9.
Summary Mammals and birds have independently developed different populations of sensory cells grouped across the width of their auditory papillae. Although in mammals there is clear evidence for disparate functions for the two hair-cell populations, the different anatomical pattern in birds has made comparisons difficult. In two species of birds, we have used single-fibre staining techniques to trace physiologically-characterized primary auditory nerve fibres to their peripheral synapses. As in mammals, acoustically-active afferent fibres of these birds innervate exclusively the neurally-lying group of hair cells in a 11 relationship, suggesting important parallels in the functional organization of the auditory papillae in these two vertebrate classes. In addition, we found a strong trend of the threshold to acoustic stimuli at the characteristic frequency across the width of the avian papilla.Abbreviations IHC inner hair cell(s) - OHC outer hair cell(s) - SHC short hair cell(s) - THC tall hair cell(s)  相似文献   

10.
Repeated stimulus causes a specific suppression of neuronal responses, which is so-called as Stimulus-Specific Adaptation (SSA). This effect can be recovered when the stimulus changes. In the auditory system SSA is a well-known phenomenon that appears at different levels of the mammalian auditory pathway. In this study, we explored the effects of adaptation to a particular stimulus on the auditory tuning curves of anesthetized rats. We used two sequences and compared the responses of each tone combination in these two conditions. First sequence consists of different pure tone combinations that were presented randomly. In the second one, the same stimuli of the first sequence were presented in the context of an adapted stimulus (adapter) that occupied 80% of sequence probability. The population results demonstrated that the adaptation factor decreased the frequency response area and made a change in the tuning curve to shift it unevenly toward the higher thresholds of tones. The local field potentials and multi-unit activity responses have indicated that the neural activities strength of the adapted frequency has been suppressed as well as with lower suppression in neighboring frequencies. This aforementioned reduction changed the characteristic frequency of the tuning curve.  相似文献   

11.
Sensory working memory consists of the short-term storage of sensory stimuli to guide behaviour. There is increasing evidence that elemental sensory dimensions - such as object motion in the visual system or the frequency of a sound in the auditory system - are stored by segregated feature-selective systems that include not only the prefrontal and parietal cortex, but also areas of sensory cortex that carry out relatively early stages of processing. These circuits seem to have a dual function: precise sensory encoding and short-term storage of this information. New results provide insights into how activity in these circuits represents the remembered sensory stimuli.  相似文献   

12.
In the auditory system, the stimulus-response properties of single neurons are often described in terms of the spectrotemporal receptive field (STRF), a linear kernel relating the spectrogram of the sound stimulus to the instantaneous firing rate of the neuron. Several algorithms have been used to estimate STRFs from responses to natural stimuli; these algorithms differ in their functional models, cost functions, and regularization methods. Here, we characterize the stimulus-response function of auditory neurons using a generalized linear model (GLM). In this model, each cell's input is described by: 1) a stimulus filter (STRF); and 2) a post-spike filter, which captures dependencies on the neuron's spiking history. The output of the model is given by a series of spike trains rather than instantaneous firing rate, allowing the prediction of spike train responses to novel stimuli. We fit the model by maximum penalized likelihood to the spiking activity of zebra finch auditory midbrain neurons in response to conspecific vocalizations (songs) and modulation limited (ml) noise. We compare this model to normalized reverse correlation (NRC), the traditional method for STRF estimation, in terms of predictive power and the basic tuning properties of the estimated STRFs. We find that a GLM with a sparse prior predicts novel responses to both stimulus classes significantly better than NRC. Importantly, we find that STRFs from the two models derived from the same responses can differ substantially and that GLM STRFs are more consistent between stimulus classes than NRC STRFs. These results suggest that a GLM with a sparse prior provides a more accurate characterization of spectrotemporal tuning than does the NRC method when responses to complex sounds are studied in these neurons.  相似文献   

13.
Neural adaptation, a reduction in the response to a maintained stimulus, is an important mechanism for detecting stimulus change. Contributing to change detection is the fact that adaptation is often stimulus specific: adaptation to a particular stimulus reduces excitability to a specific subset of stimuli, while the ability to respond to other stimuli is unaffected. Phasic cells (e.g., cells responding to stimulus onset) are good candidates for detecting the most rapid changes in natural auditory scenes, as they exhibit fast and complete adaptation to an initial stimulus presentation. We made recordings of single phasic auditory units in the frog midbrain to determine if adaptation was specific to stimulus frequency and ear of input. In response to an instantaneous frequency step in a tone, 28 % of phasic cells exhibited frequency specific adaptation based on a relative frequency change (delta-f = ±16 %). Frequency specific adaptation was not limited to frequency steps, however, as adaptation was also overcome during continuous frequency modulated stimuli and in response to spectral transients interrupting tones. The results suggest that adaptation is separated for peripheral (e.g., frequency) channels. This was tested directly using dichotic stimuli. In 45 % of binaural phasic units, adaptation was ear specific: adaptation to stimulation of one ear did not affect responses to stimulation of the other ear. Thus, adaptation exhibited specificity for stimulus frequency and lateralization at the level of the midbrain. This mechanism could be employed to detect rapid stimulus change within and between sound sources in complex acoustic environments.  相似文献   

14.
Selective attention is the mechanism that allows focusing one’s attention on a particular stimulus while filtering out a range of other stimuli, for instance, on a single conversation in a noisy room. Attending to one sound source rather than another changes activity in the human auditory cortex, but it is unclear whether attention to different acoustic features, such as voice pitch and speaker location, modulates subcortical activity. Studies using a dichotic listening paradigm indicated that auditory brainstem processing may be modulated by the direction of attention. We investigated whether endogenous selective attention to one of two speech signals affects amplitude and phase locking in auditory brainstem responses when the signals were either discriminable by frequency content alone, or by frequency content and spatial location. Frequency-following responses to the speech sounds were significantly modulated in both conditions. The modulation was specific to the task-relevant frequency band. The effect was stronger when both frequency and spatial information were available. Patterns of response were variable between participants, and were correlated with psychophysical discriminability of the stimuli, suggesting that the modulation was biologically relevant. Our results demonstrate that auditory brainstem responses are susceptible to efferent modulation related to behavioral goals. Furthermore they suggest that mechanisms of selective attention actively shape activity at early subcortical processing stages according to task relevance and based on frequency and spatial cues.  相似文献   

15.
When an object is presented visually and moves or flickers, the perception of its duration tends to be overestimated. Such an overestimation is called time dilation. Perceived time can also be distorted when a stimulus is presented aurally as an auditory flutter, but the mechanisms and their relationship to visual processing remains unclear. In the present study, we measured interval timing perception while modulating the temporal characteristics of visual and auditory stimuli, and investigated whether the interval times of visually and aurally presented objects shared a common mechanism. In these experiments, participants compared the durations of flickering or fluttering stimuli to standard stimuli, which were presented continuously. Perceived durations for auditory flutters were underestimated, while perceived durations of visual flickers were overestimated. When auditory flutters and visual flickers were presented simultaneously, these distortion effects were cancelled out. When auditory flutters were presented with a constantly presented visual stimulus, the interval timing perception of the visual stimulus was affected by the auditory flutters. These results indicate that interval timing perception is governed by independent mechanisms for visual and auditory processing, and that there are some interactions between the two processing systems.  相似文献   

16.
The past 30 years has seen a remarkable development in our understanding of how the auditory system--particularly the peripheral system--processes complex sounds. Perhaps the most significant has been our understanding of the mechanisms underlying auditory frequency selectivity and their importance for normal and impaired auditory processing. Physiologically vulnerable cochlear filtering can account for many aspects of our normal and impaired psychophysical frequency selectivity with important consequences for the perception of complex sounds. For normal hearing, remarkable mechanisms in the organ of Corti, involving enhancement of mechanical tuning (in mammals probably by feedback of electro-mechanically generated energy from the hair cells), produce exquisite tuning, reflected in the tuning properties of cochlear nerve fibres. Recent comparisons of physiological (cochlear nerve) and psychophysical frequency selectivity in the same species indicate that the ear's overall frequency selectivity can be accounted for by this cochlear filtering, at least in bandwidth terms. Because this cochlear filtering is physiologically vulnerable, it deteriorates in deleterious conditions of the cochlea--hypoxia, disease, drugs, noise overexposure, mechanical disturbance--and is reflected in impaired psychophysical frequency selectivity. This is a fundamental feature of sensorineural hearing loss of cochlear origin, and is of diagnostic value. This cochlear filtering, particularly as reflected in the temporal patterns of cochlear fibres to complex sounds, is remarkably robust over a wide range of stimulus levels. Furthermore, cochlear filtering properties are a prime determinant of the 'place' and 'time' coding of frequency at the cochlear nerve level, both of which appear to be involved in pitch perception. The problem of how the place and time coding of complex sounds is effected over the ear's remarkably wide dynamic range is briefly addressed. In the auditory brainstem, particularly the dorsal cochlear nucleus, are inhibitory mechanisms responsible for enhancing the spectral and temporal contrasts in complex sounds. These mechanisms are now being dissected neuropharmacologically. At the cortical level, mechanisms are evident that are capable of abstracting biologically relevant features of complex sounds. Fundamental studies of how the auditory system encodes and processes complex sounds are vital to promising recent applications in the diagnosis and rehabilitation of the hearing impaired.  相似文献   

17.
An adolescent female chimpanzee (Pan troglodytes) was trained to discriminate auditory compound stimuli differing in tonal frequency and/or tone on-off rate. Following acquisition training and overtraining, she was shifted to multidimensional stimulus control testing using redundant relevant auditory stimulus sets with discriminability of elements in each dimension varied systematically. Although the control by both dimensions changed significantly as a function of discriminability, the degree of dimensional control was stronger in the tone on-off rate than in the tonal frequency. These results clearly demonstrated “attentional” control of the chimpanzee's auditory discrimination behavior and the interaction between two dimensions of auditory stimuli. The author is now at the Department of Psychology, Primate Research Institute, Kyoto University as a transfer student of the Doctor course.  相似文献   

18.
Vertebrates are able to perceive the pitch of a series of harmonics, even when the fundamental frequency has been removed from the acoustic stimulus. Neural periodicity responses corresponding to the “missing fundamental” frequency of sonic stimuli have been observed in the auditory system of several animal species, including our own. This paper examines periodic cochlear neural responses of the gerbil. Periodicity responses to both sonic and ultrasonic stimuli originate within the cochlea of this animal. Acoustic stimuli, consisting of 2–12 successive harmonic frequencies, were used to generate an ensemble cochlear nerve periodicity response that was recorded from the round window of the cochlea. This response had a frequency equal to that of the missing fundamental, and not to those of the harmonic stimuli. Forward masking of the stimuli used to produce the periodicity response was used to generate sharp tuning curves, with tip frequencies corresponding to the harmonics and not to the periodicities. The sharpness of these functions increased as the frequencies of the harmonics increased, up to at least 38 kHz. This property could be related to reception of ultrasonic vocalizations utilized by many rodent species. Accepted: 11 April 1997  相似文献   

19.
We investigated the response selectivities of single auditory neurons in the torus semicircularis of Batrachyla antartandica (a leptodactylid from southern Chile) to synthetic stimuli having diverse temporal structures. The advertisement call for this species is characterized by a long sequence of brief sound pulses having a dominant frequency of about 2000 Hz. We constructed five different series of synthetic stimuli in which the following acoustic parameters were systematically modified, one at a time: pulse rate, pulse duration, pulse rise time, pulse fall time, and train duration. The carrier frequency of these stimuli was fixed at the characteristic frequency of the units under study (n=44). Response patterns of TS units to these synthetic call variants revealed different degrees of selectivity for each of the temporal variables. A substantial number of neurons showed preference for pulse rates below 2 pulses s(-1), approximating the values found in natural advertisement calls. Tonic neurons generally showed preferences for long pulse durations, long rise and fall times, and long train durations. In contrast, phasic and phasic-burst neurons preferred stimuli with short duration, short rise and fall times and short train durations.  相似文献   

20.
Theta oscillations are related to cognitive functions and reflect functional integration of frontal and medial temporal structures into coherent neurocognitive networks. This study assessed event-related theta oscillations in medication-free, euthymic patients with bipolar disorder upon auditory oddball paradigm. Twenty-two DSM-IV euthymic bipolar I (n = 19) and II (n = 3) patients and twenty-two healthy subjects were included. Patients were euthymic for at least 6 months, and psychotropic-free for at least 2 weeks. EEG was recorded at 30 electrode sites. Auditory oddball paradigm and sensory stimuli were used. Event-related Oscillations were analyzed using adaptive filtering in two different theta frequency bands (4–6 Hz, 6–8 Hz). In healthy subjects, slow theta (4–6 Hz) responses were significantly higher than those of euthymic patients upon target, non-target and sensory stimuli (p < 0.05). Fast theta (6–8 Hz) responses of healthy subjects were significantly higher than those of euthymic patients upon target-only stimuli (p < 0.05). Reduced theta oscillations during auditory processing provide strong quantitative evidence of activation deficits in related networks in bipolar disorder. Fast theta responses are related to cognitive functions, whereas slow theta responses are related to sensory processes more than cognitive processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号