首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dupont S  Moya A  Bailly X 《PloS one》2012,7(1):e29568
As a consequence of anthropogenic CO? emissions, oceans are becoming more acidic, a phenomenon known as ocean acidification. Many marine species predicted to be sensitive to this stressor are photosymbiotic, including corals and foraminifera. However, the direct impact of ocean acidification on the relationship between the photosynthetic and nonphotosynthetic organism remains unclear and is complicated by other physiological processes known to be sensitive to ocean acidification (e.g. calcification and feeding). We have studied the impact of extreme pH decrease/pCO? increase on the complete life cycle of the photosymbiotic, non-calcifying and pure autotrophic acoel worm, Symsagittifera roscoffensis. Our results show that this species is resistant to high pCO? with no negative or even positive effects on fitness (survival, growth, fertility) and/or photosymbiotic relationship till pCO? up to 54 K μatm. Some sub-lethal bleaching is only observed at pCO? up to 270 K μatm when seawater is saturated by CO?. This indicates that photosymbiosis can be resistant to high pCO?. If such a finding would be confirmed in other photosymbiotic species, we could then hypothesize that negative impact of high pCO? observed on other photosymbiotic species such as corals and foraminifera could occur through indirect impacts at other levels (calcification, feeding).  相似文献   

2.
Bone metabolism is often affected by a variety of mechanical forces, but the cytological basis of their action is not known. In this study, we examined the effect of a continuously applied compressive pressure (CCP) on the growth and differentiation of clonal mouse osteoblast-like cells (MC3T3-E1) cultured in a specifically devised culture chamber. The gas phase of the chamber was maintained at a pressure of 2 atmospheres (atm) above ambient (3 atm total, 3.1 kg/cm2; 3.0 x 10(5) Pa) by continuously infusing a compressed mixed gas (O2: N2:CO2 = 7.0%:91.3%:1.7%). The pO2, pCO2, and pH in the culture medium at 37 degrees C under 3 atm were maintained at the same levels as those under 1 atm. MC3T3-E1 cells were cultured in alpha-minimal essential medium containing 10% fetal bovine serum under either 3 atm in the CCP culture chamber or 1 atm in an ordinary CO2 incubator. Alkaline phosphatase activity, a marker of osteoblasts, was greatly suppressed by the CCP treatment. The inhibition of alkaline phosphatase activity was rapidly restored when the cells were transferred to an ordinary CO2 incubator under 1 atm, indicating that the inhibition of alkaline phosphatase activity by CCP is reversible. Cell growth was not altered under CCP. The CCP treatment greatly increased the production and secretion of prostaglandin E2 (PGE2). Adding either conditioned medium from the CCP culture or exogenous PGE2 to the control culture under 1 atm suppressed alkaline phosphatase activity dose-dependently. The CCP treatment also suppressed collagen synthesis and calcification. These results suggest that CCP causes the cells to produce and secrete PGE2, which, in turn, inhibits differentiation of osteoblasts and the concomitant calcification.  相似文献   

3.
Manipulative studies have demonstrated that ocean acidification (OA) is a threat to coral reefs, yet no experiments have employed diurnal variations in pCO(2) that are ecologically relevant to many shallow reefs. Two experiments were conducted to test the response of coral recruits (less than 6 days old) to diurnally oscillating pCO(2); one exposing recruits for 3 days to ambient (440 μatm), high (663 μatm) and diurnally oscillating pCO(2) on a natural phase (420-596 μatm), and another exposing recruits for 6 days to ambient (456 μatm), high (837 μatm) and diurnally oscillating pCO(2) on either a natural or a reverse phase (448-845 μatm). In experiment I, recruits exposed to natural-phased diurnally oscillating pCO(2) grew 6-19% larger than those in ambient or high pCO(2). In experiment II, recruits in both high and natural-phased diurnally oscillating pCO(2) grew 16 per cent larger than those at ambient pCO(2), and this was accompanied by 13-18% higher survivorship; the stimulatory effect on growth of oscillatory pCO(2) was diminished by administering high pCO(2) during the day (i.e. reverse-phased). These results demonstrate that coral recruits can benefit from ecologically relevant fluctuations in pCO(2) and we hypothesize that the mechanism underlying this response is highly pCO(2)-mediated, night-time storage of dissolved inorganic carbon that fuels daytime calcification.  相似文献   

4.
5.
Global environmental changes, including ocean acidification, have been identified as a major threat to scleractinian corals. General predictions are that ocean acidification will be detrimental to reef growth and that 40 to more than 80 per cent of present-day reefs will decline during the next 50 years. Cold-water corals (CWCs) are thought to be strongly affected by changes in ocean acidification owing to their distribution in deep and/or cold waters, which naturally exhibit a CaCO(3) saturation state lower than in shallow/warm waters. Calcification was measured in three species of Mediterranean cold-water scleractinian corals (Lophelia pertusa, Madrepora oculata and Desmophyllum dianthus) on-board research vessels and soon after collection. Incubations were performed in ambient sea water. The species M. oculata was additionally incubated in sea water reduced or enriched in CO(2). At ambient conditions, calcification rates ranged between -0.01 and 0.23% d(-1). Calcification rates of M. oculata under variable partial pressure of CO(2) (pCO(2)) were the same for ambient and elevated pCO(2) (404 and 867 μatm) with 0.06 ± 0.06% d(-1), while calcification was 0.12 ± 0.06% d(-1) when pCO(2) was reduced to its pre-industrial level (285 μatm). This suggests that present-day CWC calcification in the Mediterranean Sea has already drastically declined (by 50%) as a consequence of anthropogenic-induced ocean acidification.  相似文献   

6.
Carbon dioxide and oxygen concentrations have a profound effect on the lag period of chemoautotrophically grown Hydrogenomonas eutropha. Minimum lag periods and high growth rates were obtained in shaken flask cultures with a prepared gas mixture containing 70% H(2), 20% O(2), and 10% CO(2). However, excessively long lag periods resulted when the same gas mixture was sparged through the culture. The lag period was shortened in sparged cultures by decreasing both the pO(2) and the pCO(2), indicating that gas medium equilibration had not occurred in shaken cultures. The lag period was completely eliminated at certain concentrations of O(2) and CO(2). The optimum pO(2) was 0.05 atm, but the optimum pCO(2) varied according to the pH of the medium and physiological age of the inoculum. At pH 6.4, the pCO(2) required to obtain immediate growth of exponential, postexponential, and stationary phase inocula at equal specific rates was 0.02, 0.05, and 0.16 atm, respectively. With each 0.3-unit increase in the pH of the medium, a 50% decrease in the CO(2) concentration was needed to permit growth to occur at the same rate. The pCO(2) changes required to compensate for the pH changes of the medium had the net effect of maintaining a constant bicarbonate ion concentration. Initial growth of H. eutropha was therefore indirectly related to pCO(2) and directly dependent upon a constant bicarbonate ion concentration.  相似文献   

7.
Anthropogenic CO(2) emissions are acidifying the world's oceans. A growing body of evidence is showing that ocean acidification impacts growth and developmental rates of marine invertebrates. Here we test the impact of elevated seawater pCO(2) (129 Pa, 1271 μatm) on early development, larval metabolic and feeding rates in a marine model organism, the sea urchin Strongylocentrotus purpuratus. Growth and development was assessed by measuring total body length, body rod length, postoral rod length and posterolateral rod length. Comparing these parameters between treatments suggests that larvae suffer from a developmental delay (by ca. 8%) rather than from the previously postulated reductions in size at comparable developmental stages. Further, we found maximum increases in respiration rates of +100% under elevated pCO(2), while body length corrected feeding rates did not differ between larvae from both treatments. Calculating scope for growth illustrates that larvae raised under high pCO(2) spent an average of 39 to 45% of the available energy for somatic growth, while control larvae could allocate between 78 and 80% of the available energy into growth processes. Our results highlight the importance of defining a standard frame of reference when comparing a given parameter between treatments, as observed differences can be easily due to comparison of different larval ages with their specific set of biological characters.  相似文献   

8.
三峡坝区干流及香溪河库湾水体秋季二氧化碳分压   总被引:5,自引:0,他引:5  
于2009年9月对三峡水库坝区干流以及坝区主要库湾-香溪河流域水体中溶解CO2分压(pCO2)进行了走航观测。结果表明:秋季香溪河表层pCO2为150~240μatm,三峡水库坝区干流表层pCO2为920~1140μatm;在干、支流交汇处的水柱剖面上,表层水体pCO2最低为368μatm,随着水深的增加,pCO2急剧增大,在10m达到最大值1300μatm,10m后保持不变;通过计算,香溪河和三峡水库坝区干流河道的CO2释放通量分别为-4.74±1.15和(83.7±14.1)mmol.m-2.d-1。香溪河表现为CO2的"汇",而三峡水库坝区干流表现为CO2的"源"。在评价水库建设对周边区域CO2通量影响时,不仅要考虑局部流域,更需要对整个研究地区进行综合考察。  相似文献   

9.
As the partial pressure of CO2 (pCO2) in the atmosphere rises, photorespiratory loss of carbon in C3 photosynthesis will diminish and the net efficiency of light-limited photosynthetic carbon uptake should rise. We tested this expectation for Indiana strawberry (Duchesnea indica) growing on a Maryland forest floor. Open-top chambers were used to elevate the pCO2 of a forest floor habitat to 67 Pa and were paired with control chambers providing an ambient pCO2 of 38 Pa. After 3.5 years, D. indica leaves grown and measured in the elevated pCO2 showed a significantly greater maximum quantum efficiency of net photosynthesis (by 22%) and a lower light compensation point (by 42%) than leaves grown and measured in the control chambers. The quantum efficiency to minimize photorespiration, measured in 1% O2, was the same for controls and plants grown at elevated pCO2. This showed that the maximum efficiency of light-energy transduction into assimilated carbon was not altered by acclimation and that the increase in light-limited photosynthesis at elevated pCO2 was simply a function of the decrease in photorespiration. Acclimation did decrease the ribulose-1,5-bisphosphate carboxylase/oxygenase and light-harvesting chlorophyll protein content of the leaf by more than 30%. These changes were associated with a decreased capacity for light-saturated, but not light-limited, photosynthesis. Even so, leaves of D. indica grown and measured at elevated pCO2 showed greater light-saturated photosynthetic rates than leaves grown and measured at the current atmospheric pCO2. In situ measurements under natural forest floor lighting showed large increases in leaf photosynthesis at elevated pCO2, relative to controls, in both summer and fall. The increase in efficiency of light-limited photosynthesis with elevated pCO2 allowed positive net photosynthetic carbon uptake on days and at locations on the forest floor that light fluxes were insufficient for positive net photosynthesis in the current atmospheric pCO2.  相似文献   

10.
This study tested the hypothesis that the response of corals to temperature and pCO 2 is consistent between taxa. Juvenile massive Porites spp. and branches of P. rus from the back reef of Moorea were incubated for 1 month under combinations of temperature (29.3 °C and 25.6 °C) and pCO 2 (41.6 Pa and 81.5 Pa) at an irradiance of 599 μmol quanta m?2 s?1. Using microcosms and CO2 gas mixing technology, treatments were created in a partly nested design (tanks) with two between‐plot factors (temperature and pCO 2), and one within‐plot factor (taxon); calcification was used as a dependent variable. pCO 2 and temperature independently affected calcification, but the response differed between taxa. Massive Porites spp. was largely unaffected by the treatments, but P. rus grew 50% faster at 29.3 °C compared with 25.6 °C, and 28% slower at 81.5 Pa vs. 41.6 Pa CO2. A compilation of studies placed the present results in a broader context and tested the hypothesis that calcification for individual coral genera is independent of pH, [HCO3 ?], and [CO3 2?]. Unlike recent reviews, this analysis was restricted to studies reporting calcification in units that could be converted to nmol CaCO3 cm?2 h?1. The compilation revealed a high degree of variation in calcification as a function of pH, [HCO3 ?], and [CO3 2?], and supported three conclusions: (1) studies of the effects of ocean acidification on corals need to pay closer attention to reducing variance in experimental outcomes to achieve stronger synthetic capacity, (2) coral genera respond in dissimilar ways to pH, [HCO3 ?], and [CO3 2?], and (3) calcification of massive Porites spp. is relatively resistant to short exposures of increased pCO 2, similar to that expected within 100 y.  相似文献   

11.
Biochemically based models of C(3) photosynthesis can be used to predict that when photosynthesis is limited by the amount of Rubisco, increasing atmospheric CO(2) partial pressure (pCO(2)) will increase light-saturated linear electron flow through photosystem II (J(t)). This is because the stimulation of electron flow to the photosynthetic carbon reduction cycle (J(c)) will be greater than the competitive suppression of electron flow to the photorespiratory carbon oxidation cycle (J(o)). Where elevated pCO(2) increases J(t), then the ratio of absorbed energy dissipated photochemically to that dissipated non-photochemically will rise. These predictions were tested on Dactylis glomerata grown in fully controlled environments, at either ambient (35 Pa) or elevated (65 Pa) pCO(2), and at two levels of nitrogen nutrition. As was predicted, for D. glomerata grown in high nitrogen, J(t) was significantly higher in plants grown and measured at elevated pCO(2) than for plants grown and measured at ambient pCO(2). This was due to a significant increase in J(c) exceeding any suppression of J(o). This increase in photochemistry at elevated pCO(2) protected against photoinhibition at high light. For plants grown at low nitrogen, J(t) was significantly lower in plants grown and measured at elevated pCO(2) than for plants grown and measured at ambient pCO(2). Elevated pCO(2) again suppressed J(o); however growth in elevated pCO(2) resulted in an acclimatory decrease in leaf Rubisco content that removed any stimulation of J(c). Consistent with decreased photochemistry, for leaves grown at low nitrogen, the recovery from a 3-h photoinhibitory treatment was slower at elevated pCO(2).  相似文献   

12.
13.
Our present understanding of ocean acidification (OA) impacts on marine organisms caused by rapidly rising atmospheric carbon dioxide (CO(2)) concentration is almost entirely limited to single species responses. OA consequences for food web interactions are, however, still unknown. Indirect OA effects can be expected for consumers by changing the nutritional quality of their prey. We used a laboratory experiment to test potential OA effects on algal fatty acid (FA) composition and resulting copepod growth. We show that elevated CO(2) significantly changed the FA concentration and composition of the diatom Thalassiosira pseudonana, which constrained growth and reproduction of the copepod Acartia tonsa. A significant decline in both total FAs (28.1 to 17.4 fg cell(-1)) and the ratio of long-chain polyunsaturated to saturated fatty acids (PUFA:SFA) of food algae cultured under elevated (750 μatm) compared to present day (380 μatm) pCO(2) was directly translated to copepods. The proportion of total essential FAs declined almost tenfold in copepods and the contribution of saturated fatty acids (SFAs) tripled at high CO(2). This rapid and reversible CO(2)-dependent shift in FA concentration and composition caused a decrease in both copepod somatic growth and egg production from 34 to 5 eggs female(-1) day(-1). Because the diatom-copepod link supports some of the most productive ecosystems in the world, our study demonstrates that OA can have far-reaching consequences for ocean food webs by changing the nutritional quality of essential macromolecules in primary producers that cascade up the food web.  相似文献   

14.
High-density perfusion cultivation of mammalian cells can result in elevated bioreactor CO(2) partial pressure (pCO(2)), a condition that can negatively influence growth, metabolism, productivity, and protein glycosylation. For BHK cells in a perfusion culture at 20 x 10(6) cells/mL, the bioreactor pCO(2) exceeded 225 mm Hg with approximate contributions of 25% from cellular respiration, 35% from medium NaHCO(3), and 40% from NaHCO(3) added for pH control. Recognizing the limitations to the practicality of gas sparging for CO(2) removal in perfusion systems, a strategy based on CO(2) reduction at the source was investigated. The NaHCO(3) in the medium was replaced with a MOPS-Histidine buffer, while Na(2)CO(3) replaced NaHCO(3) for pH control. These changes resulted in 63-70% pCO(2) reductions in multiple 15 L perfusion bioreactors, and were reproducible at the manufacturing-scale. Bioreactor pCO(2) values after these modifications were in the 68-85 mm Hg range, pCO(2) reductions consistent with those theoretically expected. Low bioreactor pCO(2) was accompanied by both 68-123% increased growth rates and 58-92% increased specific productivity. Bioreactor pCO(2) reduction and the resulting positive implications for cell growth and productivity were brought about by process changes that were readily implemented and robust. This philosophy of pCO(2) reduction at the source through medium and base modification should be readily applicable to large-scale fed-batch cultivation of mammalian cells.  相似文献   

15.
Motion characteristics of cooled stallion spermatozoa in 2 freezing extenders were studied. Ejaculates from 8 stallions were split into treatments and cooled in thermoelectric cooling units at each of 2 rates. Cooling started at 37 degrees C for Experiments 1 and 3 and at 23 degrees C for Experiments 2 and 4, at a rate of -0.7 degrees C/min to 20 degrees C and from 20 to 5 degrees C, at either -0.05 degrees C/min (Rate I) or -0.5 degrees C/min (Rate II). Percentages of motile (MOT) and progressively motile spermatozoa (PMOT) were determined at 6, 24 and 48 h. Treatments in Experiment 1 were modified skim milk extender (SM); SM + 4% egg yolk (EY); SM + 4% glycerol (GL); and SM + 4% egg yolk + 4% glycerol (EY + GL). At 24 and 48 h, MOT and PMOT were lowest (P < 0.05) for spermatozoa extended in SM + EY; spermatozoa in SM + GL had the highest MOT and PMOT. Thus, glycerol partially protected spermatozoa against the effects of cooling after long-term storage. Treatments in Experiment 2 were SM, semen centrifuged and pellet resuspended in SM (SMc), SM + EY, and semen centrifuged and pellet resuspended in SM + EY (EYc). Spermatozoa in SM + EYc had the highest (P < 0.05) PMOT at 24 h and MOT and PMOT at 48 hours. Spermatozoa in SM + EY (not centrifuged) had the lowest MOT and PMOT at 24 and 48 h, respectively. There was a detrimental interaction between egg yolk and seminal plasma. Extenders in Experiment 3 were Colorado extender (CO3), CO3 + 4% egg yolk (EY), CO3 + 4% glycerol (GL), and CO3 + 4% egg yolk + 4% glycerol (EY + GL). Spermatozoa in CO3 + EY had the lowest (P < 0.05) PMOT at 24 and 48 h. CO3 did not protect spermatozoa cooled in the presence of seminal plasma. Therefore, in Experiment 4 we tested CO3 with seminal plasma present (control) and semen centrifuged and pellet resuspended in CO3 (CO3c), CO3 + EY (EYc), CO3 + GL (GLc) and CO3 + EY + GL (EY + GLc). Spermatozoa in CO3 had the lowest (P < 0.05) MOT and PMOT at all time periods, which suggested a detrimental interaction of this extender with seminal plasma.  相似文献   

16.
Deciduous forests covered the ice-free polar regions 280 to 40 million years ago under warm "greenhouse" climates and high atmospheric pCO2. Their deciduous habit is frequently interpreted as an adaptation for minimizing carbon losses during winter, but experiments with "living fossils" in a simulated warm polar environment refute this explanation. Measured carbon losses through leaf abscission of deciduous trees are significantly greater than losses through winter respiration in evergreens, yet annual rates of primary productivity are similar in all species. Here, we investigate mechanisms underlying this apparent paradox by measuring the seasonal patterns of leaf photosynthesis (A) under pCO2 enrichment in the same trees. During spring, A increased significantly in coastal redwood (Sequoia sempervirens), dawn redwood (Metasequoia glyptostroboides), and swamp cypress (Taxodium distichum) at an elevated pCO2 of 80 Pa compared with controls at 40 Pa. However, strong acclimation in Rubisco carboxylation capacity (Vc,max) completely offset the CO2 response of A in all species by the end of 6 weeks of continuous illumination in the simulated polar summer. Further measurements demonstrated the temporary nature of acclimation, with increases in Vc,max during autumn restoring the CO2 sensitivity of A. Contrary to expectations, the acclimation of Vc,max was not always accompanied by accumulation of leaf carbohydrates, but was associated with a decline in leaf nitrogen in summer, suggesting an alteration of the balance in plant sources and sinks for carbon and nitrogen. Preliminary calculations using A indicated that winter carbon losses through deciduous leaf abscission and respiration were recovered by 10 to 25 d of canopy carbon fixation during summer, thereby explaining the productivity paradox.  相似文献   

17.
Elevated atmospheric pCO(2) increases the C-availability for plants and thus leads to a comparable increase in plant biomass production and nutrient demand. Arbuscular mycorrhizal fungi (AMF) are considered to play an important role in the nutrient uptake of plants as well as to be a significant C-sink. Therefore, an increased colonization of plant roots by AMF is expected under elevated atmospheric pCO(2). To test these hypotheses, Lolium perenne L. plants were grown from seeds in a growth chamber in pots containing a silica sand/soil mixture for 9 weeks with and without inoculation with Glomus intraradices (Schenck and Smith). The growth response of plants at two different levels of N fertilization (1.5 or 4.5 mM) combined with ambient (35 Pa) and elevated atmospheric pCO(2) (60 Pa) was compared. The inoculation with G. intraradices, the elevated atmospheric pCO(2) and the high N fertilization treatment all led to an increased plant biomass production of 16%, 20% and 49%, respectively. AMF colonization and high N fertilization increased the plant growth response to elevated atmospheric pCO(2); the plant growth response to high N fertilization was also increased by AMF colonization. The root/shoot ratio was reduced by high N fertilization or elevated atmospheric pCO(2), but was not affected by AMF colonization. The unchanged specific leaf area indicated that if AMF colonization represented an increased C-sink, this was fully covered by the plant. Elevated atmospheric pCO(2) strongly increased AMF colonization (60%) while the high N fertilization had a slightly negative effect. AMF colonization neither improved the N nor P nutrition status, but led to an improved total P uptake. The results underline the importance of AMF for the response of grassland ecosystems to elevated atmospheric pCO(2).  相似文献   

18.
19.
利用实测和遥感数据,对比分析南海海气二氧化碳(CO2)交换对2011年4月热带气旋Tropical Depression One(TDO)和2013年9月热带气旋Wutip(WU)的响应及其机理。结果表明,两个热带气旋过境的“风泵”作用均对海气CO2交换产生显著影响:TDO和WU过境后,海水表层CO2分压(pCO2,sw)分别增加42.56μatm、30.88μatm,TDO过境导致区域海洋由强碳汇(-4.7±1.8)mmol·CO2·m^-2·d^-1变为弱碳源(2.0±3.1)mmol·CO2·m^-2·d^-1,而WU过境使区域海洋由弱碳源(1.9±1.0)mmol·CO2·m^-2·d^-1变为强碳源(4.0±1.6)mmol·CO2·m^-2·d^-1。pCO2,sw的增加均由于次表层富含溶解无机碳(DIC)海水的入侵,但是“风泵”的作用机制不同:TDO过境强风引起的艾克曼抽吸导致水体涌升作用显著,而WU过境导致的垂直混合作用强烈。“风泵”的作用机制差异可归因于热带气旋过境前海水的初始状态和过境时移动速度不同:TDO过境前该海域存在冷涡,强风引起的艾克曼抽吸使次表层海水的向上涌升作用增强;而WU过境前存在暖涡,强风引起的艾克曼抽吸造成次表层海水与下沉的表层水垂直混合。TDO的移动速度慢,对海水的作用时间更长,强风引起的艾克曼抽吸作用更强;而WU移动速度快,短时间强风过境造成的水体垂直混合效应作用更显著。  相似文献   

20.
Cyanase catalyzes the reaction of cyanate with bicarbonate to give 2CO2. The cynS gene encoding cyanase, together with the cynT gene for carbonic anhydrase, is part of the cyn operon, the expression of which is induced in Escherichia coli by cyanate. The physiological role of carbonic anhydrase is to prevent depletion of cellular bicarbonate during cyanate decomposition due to loss of CO2 (M.B. Guilloton, A.F. Lamblin, E. I. Kozliak, M. Gerami-Nejad, C. Tu, D. Silverman, P.M. Anderson, and J.A. Fuchs, J. Bacteriol. 175:1443-1451, 1993). A delta cynT mutant strain was extremely sensitive to inhibition of growth by cyanate and did not catalyze decomposition of cyanate (even though an active cyanase was expressed) when grown at a low pCO2 (in air) but had a Cyn+ phenotype at a high pCO2. Here the expression of these two enzymes in this unusual system for cyanate degradation was characterized in more detail. Both enzymes were found to be located in the cytosol and to be present at approximately equal levels in the presence of cyanate. A delta cynT mutant strain could be complemented with high levels of expressed human carbonic anhydrase II; however, the mutant defect was not completely abolished, perhaps because the E. coli carbonic anhydrase is significantly less susceptible to inhibition by cyanate than mammalian carbonic anhydrases. The induced E. coli carbonic anhydrase appears to be particularly adapted to its function in cyanate degradation. Active cyanase remained in cells grown in the presence of either low or high pCO2 after the inducer cyanate was depleted; in contrast, carbonic anhydrase protein was degraded very rapidly (minutes) at a high pCO2 but much more slowly (hours) at a low pCO2. A physiological significance of these observations is suggested by the observation that expression of carbonic anhydrase at a high pCO2 decreased the growth rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号