首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Four exopolysaccharides (EPS) obtained from Botryosphaeria rhodina strains isolated from rotting tropical fruit (graviola, mango, pinha, and orange) grown on sucrose were purified on Sepharose CL-4B. Total acid hydrolysis of each EPS yielded only glucose. Data from methylation analysis and (13)C NMR spectroscopy indicated that the EPS from the graviola isolate consisted of a main chain of glucopyranosyl (1-->3) linkages substituted at O-6 as shown in the putative structure below: [carbohydrate structure: see text]. The EPS of the other fungal isolates consisted of a linear chain of (1-->6)-linked glucopyranosyl residues of the following structure: [carbohydrate structure: see text]. FTIR spectra showed one band at 891 cm(-1), and (13)C NMR spectroscopy showed that all glucosidic linkages were of the beta-configuration. Dye-inclusion studies with Congo Red indicated that each EPS existed in a triple-helix conformational state. beta-(1-->6)-d-Glucans produced as exocellular polysaccharides by fungi are uncommon.  相似文献   

2.
The neutral exopolysaccharide EPS180 produced from sucrose by the glucansucrase GTF180 enzyme from Lactobacillus reuteri 180 was found to be a (1-->3,1-->6)-alpha-D-glucan, with no repeating units present. Based on linkage analysis, periodate oxidation, and 1D/2D 1H and 13C NMR spectroscopy of the intact EPS180, as well as MS and NMR analysis of oligosaccharides obtained by partial acid hydrolysis of EPS180, a composite model, that includes all identified structural features, was formulated as follows: [Formula: see text].  相似文献   

3.
A bacterial strain M6, isolated from soil and identified as Arthrobacter globiformis, produced a novel nonreducing oligosaccharide. The nonreducing oligosaccharide was produced from starch using a culture supernatant of the strain as enzyme preparation. The oligosaccharide was purified as a crystal preparation after alkaline treatment and deionization of the reaction mixture. The structure of the oligosaccharide was determined by methylation analysis, mass spectrometry, and (1)H and (13)C NMR spectroscopy, and it was demonstrated that the oligosaccharide had a cyclic structure consisting of four glucose residues joined by alternate alpha-(1-->4)- and alpha-(1-->6)-linkages. The cyclic tetrasaccharide, cyclo-{-->6)-alpha-D-Glcp(1-->4)-alpha-D-Glcp(1-->6)-alpha-D-Glcp(1-->4)-alpha-D-Glcp(1-->}, was found to be a novel oligosaccharide, and was tentatively called cyclic maltosyl-maltose (CMM). CMM was not hydrolyzed by various amylases, such as alpha-amylase, beta-amylase, glucoamylase, isoamylase, pullulanase, maltogenic alpha-amylase, and alpha-glucosidase, but hydrolyzed by isomalto-dextranase to give rise to isomaltose. This is the first report of the cyclic tetrasaccharide, which has alternate alpha-(1-->4)- and alpha-(1-->6)-glucosidic linkages.  相似文献   

4.
A systematic search for possible regular helical structures of a highly branching (1-->3)-alpha-D-glucan was done using the n-h mapping technique, combined with MM3-generated relaxed-residue energy map calculations with respect to the conformations of the backbone glycosidic linkages. The alpha-D-glucan, consisting of a (1-->3)-alpha-linked backbone with alpha-D-glucose side residues attaching to an O6 atom of every second backbone residue, was considered as a model polysaccharide of a branching part of the glucan produced by oral bacteria, which was known to be related to dental plaque formation and to contribute to dental caries. The potential energy surfaces of the trisaccharide repeating unit of the branching alpha-D-glucan indicated that (1-->6)-alpha-linked side residues did not appear to interfere significantly with the backbone stereochemistry, probably due to a further separation of the three-bond-linked side residue compared with an ordinary two-bond-linked residue. Based on the n-h maps of the branching alpha-D-glucan, the side residues, when involved in a complete helix, mostly contributed additional stabilizations to particular helical structures. It was found by checking the typical helix models that formation of hydrogen bonds involving side residues was probably a major cause of the stabilization. This hydrogen bonding was expected to increase insolubility for the glucan chain--a typical, physical property observed for the bacterial alpha-D-glucan--by introducing its backbone stereochemistry as an additional stiff feature.  相似文献   

5.
The exopolysaccharide, Botryosphaeran, produced by the ligninolytic, ascomyceteous fungus Botryosphaeria sp., was isolated from the extracellular fluid by precipitation with ethanol, and purified by gel permeation chromatography to yield a carbohydrate-rich fraction (96%) composed mainly of glucose (98%). Infra-red and 13C NMR spectroscopy showed that all the glucosidic linkages were in the beta-configuration. Data from methylation analysis and Smith degradation indicated that Botryosphaeran was a (1-->3)-beta-D-glucan with approx 22% side branching at C-6. The products obtained from partial acid hydrolysis demonstrated that the side branches consisted of single (1-->6)-beta-linked glucosyl, and (1-->6)-beta-linked gentiobiosyl residues.  相似文献   

6.
Cheng MC  Lin CH  Lin HJ  Yu YP  Wu SH 《Glycobiology》2004,14(2):147-155
Alpha-(2 --> 8)/alpha(2 --> 9) alternatively linked polysialic acid (PSA) can be identified by controlled hydrolysis followed by the analysis with capillary electrophoresis (CE). Due to the different stability of alpha(2 --> 8) and alpha(2 --> 9) linkages in acidic hydrolysis, oligosialic acids (OSAs) from the hydrolysis of alpha(2 --> 8)/alpha(2 --> 9) OSA/PSA could be classified into two groups in the CE profile. The group with an odd numerical degree of polymerization (DP) had two peaks in the CE profile, and the other group, with even number of DP, showed one peak. Each alternating alpha(2 --> 8)/alpha(2 --> 9) linked OSA contains two isomers: one starts with the alpha(2 --> 8) linkage from the nonreducing end and the other starts with the alpha(2 --> 9) linkage from the nonreducing end. Trimers and tetramers were isolated by using a Mono Q column with an HPLC system. The two trimer isomers are alpha(2 --> 8)/alpha(2 --> 9) and alpha(2 --> 9)/alpha(2 --> 8) linkages and only showed partial separation by CE. After lactonization, sialidase hydrolysis, and alkaline treatment, the two trimer isomers could be separated and identified by CE analysis, but only the alpha(2 --> 8)/alpha(2 --> 9) trimer could be converted to the dilactone in glacial acetic acid. The two tetramer isomers could be converted to four monolactones and three dilactones. These lactonized species could be identified on the basis of several principles in sialidase hydrolysis and lactonization. In conclusion, regioselectivity on the lactonization of oligosialic acids proceeds under several principles: (1) Lactonization takes place more easily in the alpha(2 --> 8) linkage than in the alpha(2 --> 9) linkage; (2) all of the positions of alpha(2 --> 8) linkages in alpha(2 --> 8)/alpha(2 --> 9) alternatively linked OSA can be lactonized regardless of external or internal carboxyl groups involved; and (3) for the site of alpha(2 --> 9) linkage, only internal carboxyl groups can be lactonized.  相似文献   

7.
Mei X  Heng L  Fu M  Li Z  Ning J 《Carbohydrate research》2005,340(15):2345-2351
A concise and effective synthesis of lauryl heptasaccharide 17 was achieved from the key intermediates lauryl 2,3,4,6-tetra-O-benzoyl-beta-D-galactopyranosyl-(1-->4)-2,3,6-tri-O-benzoyl-beta-D-glucopyranosyl-(1-->3)-2,4-di-O-benzoyl-beta-D-glucopyranoside (10) and isopropyl 2,4,6-tri-O-acetyl-3-O-allyl-beta-D-glucopyranosyl-(1-->3)-[2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->6)]-2,4-di-O-acetyl-beta-D-glucopyranosyl-(1-->3)-2,4,6-tri-O-acetyl-1-thio-beta-D-glucopyranoside (15). The key trisaccharide glycosyl acceptor 10 was constructed by coupling 2,3,4,6-tetra-O-benzoyl-beta-D-galactopyranosyl-(1-->4)-2,3,6-tri-O-benzoyl-alpha-D-glucopyranosyl trichloroacetimidate (3) with lauryl 6-O-acetyl-2,4-di-O-benzoyl-beta-D-glucopyranoside (9), followed by deacetylation. The thioglycoside donor 15 was obtained by condensation of 2,4,6-tri-O-acetyl-3-O-allyl-beta-D-glucopyranosyl-(1-->3)-[2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->6)]-2,4-di-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (11) with isopropyl 4,6-O-benzylidene-1-thio-beta-D-glucopyranoside (12), followed by debenzylidenation and acetylation. A bioassay of the inhibition of S180 noumenal tumors showed that lauryl heptasaccharide 17 could be employed as a potential agent for cancer treatment.  相似文献   

8.
Four water-insoluble (1-->3)-alpha-D-glucans, coded L-II1, L-II2, L-II3 and L-II4, with different molecular weights were isolated from four kinds of fruiting bodies of Lentinus Edodes. The four alpha-D-glucans were O-sulfonated to obtain derivatives (SL-II) having degrees of substitution (DS) from 0.9 to 2.1 respectively. The structure of the samples was analyzed by infrared spectra, elemental analysis, and 13C NMR. The weight-average molecular weight (Mw), radii of gyration (z1/2) and intrinsic viscosity ([eta]) of the native alpha-D-glucans and O-sulfonated derivatives were measured by size-exclusion chromatography combined with laser light scattering (SEC-LLS), LLS, and viscometry in 0.2 M aqueous NaCl and in dimethyl sulfoxide (DMSO) containing 0.25 M LiCl at 25 degrees C respectively. The Mw values of the O-sulfonated derivatives were much lower than those of the native alpha-D-glucans. The experimental results indicate that the O-sulfonated derivatives are water-soluble and exist as an expanded flexible chain in aqueous solution owing to intramolecular hydrogen bonding or interaction between charge groups. The in vivo and in vitro antitumor activities of the native alpha-D-glucans and their O-sulfonated derivatives against solid tumor Sarcoma 180 cells were evaluated and compared. Interestingly, all of the O-sulfonated derivatives exhibited higher antitumor activities than those of the native glucans. The results reveal that the effect of O-sulfonation of the alpha-D-glucan on the improvement of their antitumor activities was considerable.  相似文献   

9.
Acidic glycosphingolipid components were extracted from the yeast form of the dimorphic mycopathogen Sporothrix schenckii. Two minor and the major fraction from the yeast form (Ss-Y1, -Y2, and -Y6, respectively) have been isolated. By a combination of 1- and 2-D 1H-nuclear magnetic resonance (NMR) spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and gas chromatography/mass spectrometry (GC/MS), Ss-Y6 was determined to be triglycosylinositol phosphorylceramide with a novel glycan structure, Manalpha1-->3Manalpha1-->6GlcNH(2)alpha1-->2Ins1-P-1Cer (where Ins=myo-inositol, P=phosphodiester). While the GlcNH(2)alpha1-->6Ins1-P- motif is found widely distributed in eukaryotic GPI anchors, the linkage GlcNH(2)alpha1-->2Ins1-P- has not been previously observed in any glycolipid. Ss-Y1 and Ss-Y2 were both found to have the known glycan structure Manalpha1-->3Manalpha1-->2Ins1-P-1Cer. Together with the results of a prior study [Toledo et al. (2001) Biochem. Biophys. Res. Commun. 280, 19-24] which showed that the mycelium form expresses GIPCs with the structures Manalpha1-->6Ins1-P-1Cer and Manalpha1-->3Manalpha1-->6Ins1-P-1Cer, these results demonstrate that S. schenckii can synthesize glycosylinositol phosphorylceramides with at least three different core linkages.  相似文献   

10.
Enzymatic synthesis was attempted of six trisaccharides and 14 tetrasaccharides comprising beta-(1-->4)-linked D-glucose and D-xylose residues, using cellodextrin phosphorylase (CDP, EC 2.4.1.49) as the enzyme catalyst, with alpha-D-glucose 1-phosphate (1) or alpha-D-xylose 1-phosphate (2) as the donor substrates, and cellobiose (3), xylobiose (4), betaGlc-(1-->4)-Xyl (5), or betaXyl-(1-->4)-Glc (6) as the acceptor substrates. All enzymatic reactions were performed at pH 7.0 and the products purified by gel-filtration chromatography. We successfully synthesized all six hetero-trisaccharides and 10 of the 14 possible hetero-tetrasaccharides. It was not found possible to synthesize the four tetrasaccharides with a Xyl-->Glc sequence at their non-reducing ends employing this method. The stereochemistries of the isolated products were assessed by analysis of their 2D NMR spectra (DQF-COSY, TOCSY, HSQC, HMBC), confirming that all of the glycosidic bonds in the products were beta-(1-->4) linkages.  相似文献   

11.
The structure and organization of Palmaria palmata cell walls, which are largely involved in biological and physiological functions as well as in biotechnological and food applications of this red marine alga, are principally assumed by the interactions and linkages of major mix-linked beta-(1-->3)/beta-(1-->4)-D-xylans. These partly acidic polysaccharides are essentially held in the cell wall by H-bonds. The location of the acid groups and the distribution of 1-->3-linkage were studied following the endo-beta-(1,4)-xylanase hydrolysis of sequentially extracted xylans, and fine analysis of the oligosaccharides produced by anion exchange chromatography, high performance anion exchange chromatography (HPAEC)-PAD, nuclear magnetic resonance (NMR) and electrospray ion trap mass spectrometry (ESI-MS) techniques. The results indicate that the acidity of the xylans was related to potential linkages to sulfated and/or phosphorylated xylogalactoprotein complexes. H-bonding of the mix-linked xylans involved a regular 1,3-linkages distribution idealized in a pentameric repeating structure (one 1,3-linkage and four 1,4-linkages). Furthermore, MS analysis of the xylo-oligosaccharides revealed a substitution of the mix-linked xylans by a non-osidic component of 175 g mol(-1). The presence of this substituent and of the proposed covalent linkage between the mix-linked xylans and charged glycoproteins are discussed with regard to the polysaccharides interactions in P. palmata cell walls.  相似文献   

12.
The neutral exopolysaccharide EPS35-5 (reuteran) produced from sucrose by the glucansucrase GTFA enzyme from Lactobacillus reuteri 35-5 was found to be a (1-->4,1-->6)-alpha-D-glucan, with no repeating units present. Based on linkage analysis and 1D/2D 1H and 13C NMR spectroscopy of intact EPS35-5, as well as MS and NMR analysis of oligosaccharides obtained by partial acid hydrolysis and enzymatic hydrolysis, using pullulanase M1 (Klebsiella planticola), of EPS35-5, a composite model, that includes all identified structural elements, was formulated as follows: [Formula: see text].  相似文献   

13.
Chemically fully sulfated polysaccharides including xylan (-->4Xylbeta-(1-->4)Xylbeta1-->), amylose (-->4Glcalpha-(1-->4)Glcalpha1-->), cellulose (-->4Glcbeta-(1-->4)Glcbeta1-->), curdlan (-->3Glcbeta-(1-->3)Glcbeta1-->) and galactan (-->3Galbeta-(1-->3)Galbeta1-->), which have been isolated from Korean clam, were prepared, and their anticoagulant activity was investigated. The results strongly suggest that the activity might not be depending on anomeric configuration (alpha or beta) or monosaccharide species but on the glycosidic linkage, either (1-->3) or (1-->4). 1H NMR studies of these modified polysaccharides show that the neighboring sulfate groups at the C-2 and C-3 positions might have caused the conformational changes of each monosaccharide from 4C(1) to 1C(4). Furthermore, the effect of 6-sulfate residues on the anticoagulant activity was investigated using a specific desulfated reaction for the chemically fully sulfated polysaccharides. The 6-sulfate group is very important in determining anticoagulant activity of (1-->3)-linked polysaccharides, whereas the activity is not affected by presence or absence of the 6-sulfate group in (1-->4)-linked polysaccharides.  相似文献   

14.
A beta-(1-->6)-branched beta-(1-->3)-glucohexaose, present in many biologically active polysaccharides from traditionally herbal medicines such as Ganoderma lucidum, Schizophyllum commune and Lentinus edodes, was synthesized as its lauryl glycoside 32, and its analogues 18, 20 and 33 containing an alpha-(1-->3) linked bond were synthesized. It is interesting to find that coupling of a 3,6-branched acylated trisaccharide trichloroacetimidate donor 9 with 3,6-branched acceptors 13 and 16 with 3'-OH gave the alpha-(1--> 3)-linked hexasaccharides 17 and 19, respectively, in spite of the presence of C-2 ester capable of neighboring group participation. However, coupling of 9 with 4-methoxyphenyl 4,6-O-benzylidene-beta-D-glucopyranoside (27) selectively gave beta-(1-->3)-linked tetrasaccharide 28. Simple chemical transformation of the tetrasaccharide 28 gave acylated tetrasaccharide trichloroacetimidate 29. Coupling of 29 with lauryl (1-->6)-linked disaccharide 26 with 3-OH gave beta-(1-->3)-linked hexasaccharide 30 as the major product. Bioassay showed that in combination with the chemotherapeutic agent cyclophospamide (CPA), the hexaose 18 at a dose of 0.5-1mg/kg substantially increased the inhibition of S(180) for CPA, but decreased the toxicity caused by CPA. Some of these oligosaccharides also inhibited U(14) noumenal tumor in mice effectively.  相似文献   

15.
Bovine beta-(1-->4)-galactosyltransferase was assayed with a series of 5a-carba-sugars, i.e., sugar analogues in which the ring oxygen of pyranose is replaced by a methylene group. The analogues are 5a-carba-sugar of 2-acetamido-2-deoxy-alpha-DL-galactopyranose, both alpha and beta anomers of 2-acetamido-2-deoxy-DL-glucopyranose (5a-carba-DL-GlcNAc), and 2-acetamido-2-deoxy-DL-mannopyranose. Of these analogues, both alpha and beta anomers of 5a-carba-DL-GlcNAc act as an acceptor. Enzymatic synthesis using the alpha and beta anomers of 5a-carba-DL-GlcNAc afforded the corresponding D-Gal-beta-(1-->4)-5a-carba-alpha-D-GlcNAc and D-Gal-beta-(1-->4)-5a-carba-beta-D-GlcNAc on a practical scale, and these structures were confirmed by NMR spectroscopy. These results indicate that the ring oxygen atom in the 5a-carba-D-GlcNAc is not used for specific recognition by bovine beta-(1-->4)-galactosyltransferase.  相似文献   

16.
Kim H  Jeong K  Cho KW  Paik SR  Jung S 《Carbohydrate research》2006,341(8):1011-1019
The conformational preferences of a cyclic osmoregulated periplasmic glucan of Ralstonia solanacearum (OPGR), which is composed of 13 glucose units and linked entirely via beta-(1-->2) linkages excluding one alpha-(1-->6) linkage, were characterized by molecular dynamics simulations. Of the three force fields modified for carbohydrates that were applied to select a suitable one for the cyclic glucan, the carbohydrate solution force field (CSFF) was found to most accurately simulate the cyclic molecule. To determine the conformational characteristics of OPGR, we investigated the glycosidic dihedral angle distribution, fluctuation, and the potential energy of the glucan and constructed hypothetical cyclic (CYS13) and linear (LINEAR) glucans. All beta-(1-->2)-glycosidic linkages of OPGR adopted stable conformations, and the dihedral angles fluctuated in this energy region with some flexibility. However, despite the inherent flexibility of the alpha-(1-->6) linkage, the dihedral angles have no transition and are more rigid than that in a linear glucan. CYS13, which consists of only beta-(1-->2) linkages, is somewhat less flexible than other glycans, and one of its linkages adopts a higher energy conformation. In addition, the root-mean-square fluctuation of this linkage is lower than that of other linkages. Furthermore, the potential energy of glucans increases in the order of LINEAR, OPGR, and CYS13. These results provide evidence of the existence of conformational constraints in the cyclic glucan. The alpha-(1-->6)-glycosidic linkage can relieve this constraint more efficiently than the beta-(1-->2) linkage. The conformation of OPGR can reconcile the tendency for individual glycosidic bonds to adopt energetically favorable conformations with the requirement for closure of the macrocyclic ring by losing the inherent flexibility of the alpha-(1-->6)-glycosidic linkage.  相似文献   

17.
The syntheses of three trisaccharides: alpha-Neu5Ac-(2 --> 3)-beta-D-Gal-(1 --> 4)-beta-D-GlcNAc --> OMe, alpha-Neu5Ac-(2 --> 3)-beta-D-Gal6SO3Na-(1 --> 4)-beta-D-GlcNAc --> OMe, and alpha-Neu5Ac-(2 --> 3)-beta-D-Gal-(1 --> 3)-alpha-D-GalNAc --> OBn were accomplished by using either methyl (phenyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-beta-D-glycero-D-g alacto-2-nonulopyranoside)onate or methyl (phenyl N-acetyl-5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-beta-D-gl ycero-D-galacto-2-nonulopyranoside)onate as the sialyl donor. The N,N-diacetylamino sialyl donor appears to be more reactive than its parent acetamido sugar when allowed to react with an disaccharide acceptor under the same glycosylation conditions. The trisaccharides, as well as the intermediate products, were fully characterized by 2D DQF 1H-1H COSY and 2D ROESY spectroscopy.  相似文献   

18.
Chemical examination of the seeds of Chinese yew, Taxus yunnanensis Cheng et L. K. Fu resulted in the isolation of an 11(15-->1)abeotaxane, an 11(15-->1), 11(10-->9)bisabeotaxane and two 3,11-cyclotaxanes. The structures of these new taxoids were established as 13alpha-acetoxy-5alpha-cinnamoyloxy-11(15-->1)abeotaxa-4(20),11-diene-9alpha,10beta,15-triol (1), 20-acetoxy-2alpha-benzoyloxy-4alpha, 5alpha, 7beta, 9alpha, 13alpha-pentahydroxy-11(15-->1), 11(10-->9) bisabeotax-11-eno-10,15-lactone (2), 2alpha,10beta-diacetoxy-5alpha-cinnamoyloxy-9alpha-hydroxy-3,11 -cyclotax-4(20)-en-13-one (3) and 10beta-acetoxy-2alpha,5alpha,9alpha-trihydroxy-3,11-cyclotax-4(20)-en-13-one (4) on the basis of spectral analyses.  相似文献   

19.
We have synthesized beta-D-GlcNAc-(1-->4)-beta-D-GlcNAc-(1-->4)-beta-D-GlcNAc-(1-->4)-D-GlcN (2) through a partial N-acetylation reaction of chitosan tetramer 1 by a chitin deacetylase from Colletotrichum lindemuthianum ATCC 56676. The compound was purified from the mixture of acetylation products of 1 using cation-exchange column chromatography and amine-adsorption column chromatography, and its structure was estimated by 1H NMR and FABMS analyses. The enzymatic reaction allows a regioselectivity that is hard to achieve by chemical N-acetylation.  相似文献   

20.
A structural characterization of bound water molecules in the cyclic tetrasaccharide, cyclo-{-->6}-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->), was carried out by NMR spectroscopy. H-1', 2'-OH, H-3', and 4'-OH of the 3-O-glycosylated residue and H-1 of the 6-O-glycosylated residue were found to cross-relax with protons of bound waters using the double-pulsed field-gradient spin-echo ROESY experiment. In the crystal structure, one water molecule is located in the center of the plate, and its temperature factor is very low, indicating that this water molecule is an intrinsic component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号