首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polypeptides encoded by the mer operon.   总被引:4,自引:8,他引:4       下载免费PDF全文
HgCl2-induced polypeptides synthesized by Escherichia coli minicells containing recombinant or natural HgR plasmids were labeled with [35S]methionine and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. All plasmids examined encoded two heavily labeled, HgCl2-inducible polypeptides of 69,000 and 12,000 daltons. Most plasmids also encoded two additional HgCl2-inducible proteins in the 14,000- to 17,000-dalton range. Antiserum prepared against a purified mercuric ion reductase reacts with the 69,000-dalton polypeptide and a minor 66,000-dalton protein seen in several different HgR minicells. Recombinant plasmids constructed from portions of mer DNA from the IncFII plasmid NR1 were also analyzed in the minicell system. Five HgCl2-inducible polypeptides (69,000, 66,000, 15,100, 14,000, and 12,000 daltons) were synthesized in minicells carrying pRR130, a recombinant derivative containing the EcoRI-H and EcoRI-I restriction fragments of NR1. The EcoRI-H fragment of NR1 encodes the three small mer proteins of 15,100, 14,000, and 12,000 daltons and the amino-terminal 40,000 daltons of the mercuric ion reductase monomer.  相似文献   

2.
Murine interferon-gamma (MuIFN-gamma), produced by the T-cell lymphoma, L12-R4, and stimulated with phorbol myristic acetate, was purified by rat monoclonal antibodies AN-18.17.24. The purified product retained its biologic activity and consisted of two proteins (Mr = 17,500 and 16,500), as determined by sodium dodecyl sulfate-gel electrophoresis. Both species were found to be glycosylated, since their Mr values decreased to 14,500 and 13,500 when the producing cells were stimulated in the presence of tunicamycin. Analysis of intracellular and secreted forms in the presence of [35S] methionine revealed that MuIFN-gamma is synthetized as a single peptide of Mr = 17,500 and undergoes proteolytic cleavage during or after secretion. Peptide mapping by reverse phase high pressure liquid chromatography showed indeed that the peptide profile of both species is very similar, suggesting a high degree of homology in the primary structure. These results demonstrate that the molecular heterogeneity of the MuIFN-gamma is probably the outcome of proteolytic processing during or after secretion.  相似文献   

3.
Two NADPH-adrenodoxin reductase-dependent iron-sulfur proteins were detected in both porcine kidney and bovine adrenal mitochondria by using high resolution polyacrylamide electrophoresis. Adrenodoxin (Mr = 12,000) constituted the major ferredoxin activity in adrenal mitochondria and a similarly sized protein (Mr = 11,500) was isolated as the major renal ferredoxin activity. A second, higher molecular weight ferredoxin was observed in both adrenal (Mr = 13,300) and kidney (Mr = 13,000) mitochondria. The two renal ferredoxins were isolated by the use of ion exchange, gel exclusion, and preparative electrophoretic techniques. An absorption spectrum typical of [2Fe-2S] ferredoxins was obtained for each protein; however, the larger renal molecule had an unusually high 276 nm absorbance. Immunologic studies revealed a significant degree of antigenic commonality between the two renal proteins as well as specific cross-reactivity of adrenodoxin with antiserum raised against the renal proteins. A possible precursor-product relationship between the paired renal and adrenal ferredoxins is discussed.  相似文献   

4.
The expression of the antigenic determinant identified by the B54.2 rat monoclonal antibody on four populations of mouse mast cells has been quantified, and the epitope-bearing surface antigen and its biosynthesis have been characterized. As assessed by indirect immunofluorescence staining and flow cytometric analysis, B54.2 antibody bound to serosal mast cells (S-MC), bone marrow culture-derived mast cells (BM-MC), fetal liver culture-derived mast cells (FTL-MC), and Abelson murine leukemia virus-transformed FTL-MC (ABFTL-MC). However, the intensity of cell surface fluorescence exhibited by ABFTL-MC was approximately eightfold less per cell compared with nontransformed, culture-derived mast cells. Immunoprecipitation of B54.2 antibody-binding molecules from each population of mast cells labeled intrinsically with [35S]methionine and analysis by SDS-PAGE demonstrated that the B54.2 epitope was expressed in each case on two noncovalently associated proteins of 110,000 Mr and approximately 130,000 Mr, but that the percentage of radiolabel in the latter species was approximately threefold less in ABFTL-MC than in BM-MC. As assessed by pulse-chase analysis with [35S]methionine, the 110,000 Mr protein was a precursor of the 130,000 Mr molecule ("B54.2 antigen") synthesized by BM-MC. Labeling of BM-MC with [35S]methionine in the presence of tunicamycin followed by immunoprecipitation and SDS-PAGE of B54.2 antibody-binding material revealed a single species of 93,000 Mr, indicating that the native molecules contained N-linked carbohydrate. Endoglycosidase H treatment of the glycoproteins precipitated by B54.2 antibody from BM-MC reduced the Mr of the 110,000-Mr molecule to 93,000 Mr without an appreciable change in the 130,000-Mr species. These data indicate that the 110,000-Mr precursor form is a "high mannose" type glycoprotein and the 130,000-Mr membrane surface B54.2 antigen is a "complex" type glycoprotein, and that the epitope recognized by the B54.2 antibody on the surface of the mouse mast cell populations is located on the 93,000-Mr peptide core.  相似文献   

5.
IL-5 is a T cell-derived lymphokine that induces B cell growth and differentiation in murine systems. In this study, we examined the role of carbohydrate moiety of IL-5 in the expression of biological function. IL-5 polypeptides translated in Xenopus oocytes were heterogeneous in terms of isoelectric point (pI 4.7 to 8.0) and m.w. (45,000 to 60,000 under nonreducing conditions) and yielded m.w. of 25,000 to 30,000 under reducing conditions. Treatment of rIL-5 with N-glycanase under reducing conditions yielded an IL-5 monomer of m.w. 12,000 to 14,000. Furthermore, deglycosylated rIL-5 that had been translated in the presence of tunicamycin showed very limited heterogeneity by two-dimensional gel electrophoresis (first dimension, nonequilibrium pH gradient electrophoresis; second dimension, SDS-PAGE). The m.w. was 27,000 to 28,000 under non-reducing conditions and migrated to m.w. 13,000 to 14,000 under reducing conditions. These results indicate that IL-5 is a glycoprotein carrying the N-glycosidically-linked carbohydrates. Treatment of IL-5 with sialidase caused the decrease in the heterogeneity in isoelectric point of IL-5. Deglycosylated rIL-5 that had been obtained from tunicamycin-treated oocytes could bind to IL-5-responding cells (T88-M), which express both high- and low-affinity IL-5 receptors, as efficient as intact rIL-5 under high-affinity conditions. Scatchard plot analysis of equilibrium binding of 35S-labeled rIL-5 to T88-M cells revealed that the dissociation constants (Kd) of glycosylated rIL-5 and deglycosylated rIL-5 were 127 pM and 110 pM, respectively. IL-5 activities determined by both B cell growth and differentiation assays were not affected by deglycosylation. These results indicate that N-linked glycoside moiety of IL-5 molecules may not play an essential role in the expression of its activity.  相似文献   

6.
7.
After extraction with 4 M guanidinium chloride and purification by DEAE-cellulose chromatography, the heparan sulfate proteoglycan (HSPG) of calf anterior lens capsule was found to consist of two immunologically related components (Mr = 340,000 and 250,000) which upon deglycosylation with trifluoromethanesulfonic acid yielded core proteins with Mr values of 170,000 and 145,000. The heparan sulfate chains were uniform in size (Mr = 14,000) and manifested a clustering of sulfate groups in a peripheral domain. From the decrease in Mr observed after heparitinase digestion, it could be estimated that 6 and 11 glycosaminoglycan chains were present in the Mr = 250,000 and 340,000 components respectively. The occurrence of N-linked oligosaccharides was evident from the size difference of the heparitinase- and trifluoromethane-sulfonic acid-treated proteoglycans (approximately 20 kDa), as well as from the presence of a substantial number of mannose residues; furthermore, interaction of the capsule proteoglycan with Bandeiraea simplicifolia I suggested that these carbohydrate units contains terminal alpha-D-Gal groups. Cultured lens epithelial cells deposited a single [35S]sulfate-labeled proteoglycan into their matrix (Mr = 400,000) which was immunologically related to the lens capsule proteoglycan and contained only heparan sulfate chains. In addition to this component, the medium from these cells contained an immunologically unrelated HSPG (Mr = 150,000) as well as a chondroitin sulfate proteoglycan (Mr = 240,000). Examination of bovine glomeruli indicated that, in addition to the previously described 200-kDa HSPG, an immunologically related 350-kDa component was also present. This size heterogeneity, which is comparable to that seen in the lens capsule, is most readily attributable to proteolytic processing of a precursor molecule. Studies with polyclonal antibodies demonstrated only limited cross-reactivities between the Engelbreth-Holms-Swarm proteoglycan and the components from lens capsule and glomerular basement membrane; since even the latter two differed somewhat in their antigenic sites, it would appear that cell- and species-dictated genetic differences as well as post-translational events contribute to the diversity observed in basement membrane HSPGs.  相似文献   

8.
In order to define mechanisms regulating the synthesis of procollagenase in human rheumatoid synovial fibroblasts, the proteins synthesized by cultured cells were labeled with [35S]methionine. Labeled medium proteins were analyzed by SDS-PAGE directly and after immunocomplexing with a specific antibody to human fibroblast collagenase. Labeling of both the predominant form of the enzyme (Mr approximately 55 000) as well as a minor species (Mr approximately 61 000) was increased following incubation with the monokine, mononuclear cell factor/interleukin 1. The approximately 61 kDa form of the procollagenase appears to be a glycosylated form of the approximately 55 kDa precursor based on binding to Con A-Sepharose and decrease in the approximately 61 kDa form after culture in the presence of tunicamycin. Thus, mononuclear cell factor, homologous with interleukin 1, partially purified from monocyte conditioned medium increased incorporation of [35S]methionine into several medium proteins, including those complexed by the anticollagenase antibody. In the presence of mononuclear cell factor/interleukin 1, labeling of the procollagenase was increased 12-14-fold over control cultures incubated with medium alone. Therefore, one of the mechanisms involved in increase of collagenase activity in the medium of cultured synovial fibroblasts in the presence of mononuclear cell factor/interleukin 1 is a stimulation of enzyme protein synthesis.  相似文献   

9.
Monoclonal antibodies were raised against membranes of Leishmania tropica (formerly L. tropica minor). These antibodies do not react with membranes or homogenates prepared from any other species of Leishmania examined. The antigens identified by all four monoclonal antibodies reside on the external surface of the promastigote and are released into the culture medium. Immunoprecipitation of metabolically ([3H]glucose, -glucosamine, or [35S]methionine)-labeled, [125I]lactoperoxidase-labeled, or Western blot analysis of the parasites identified species-specific determinants residing on several different molecules with Mr between 12,000 and 140,000. All of the monoclonal antibodies appear to recognize determinants on a common [3H]sugar-labeled glycoconjugate, Mr = 32,000 to 44,000, but also react with additional components of 55,000, 80,000, 92,000, and 130,000 m.w. Antibody binding to the parasites is very sensitive to mild oxidation with periodate, suggesting that the species-specific determinants are carbohydrate in nature.  相似文献   

10.
Sphingolipid activator proteins (SAP) are relatively small molecular weight proteins that stimulate the enzymatic hydrolysis of sphingolipids in the presence of specific lysosomal hydrolases. SAP-2 has previously been demonstrated to activate the hydrolysis of glucosylceramide, galactosylceramide, and, possibly, sphingomyelin. Using monospecific rabbit antibodies against human spleen SAP-2, the synthesis and processing of SAP-2 were studied in cultured human fibroblasts. When [35S]methionine was presented in the medium to control human cells for 4 h, five major areas of radiolabeling were found. These had apparent molecular weights of 73,000, 68,000, 50,000, 12,000, and 9,000. Further studies indicated that the major extracellular product in normal cells given NH4Cl along with the [35S]methionine and in medium from cultures from patients with I cell disease had an apparent molecular weight of 73,000. The Mr = 68,000 and 73,000 species can be converted to a species with an apparent molecular weight of 50,000 by the action of endoglycosidase F. After labeling cells for 1 h followed by a 1-h chase, the Mr = 12,000 and 9,000 species appear. Treatment of the immunoprecipitated mixture with endoglycosidase F resulted in conversion of these species to one band with an apparent molecular weight of 7,600. These studies indicate that this relatively low molecular weight protein is rapidly synthesized from a relatively large molecular weight highly glycosylated precursor.  相似文献   

11.
When Chinese hamster ovary cells are incubated with [terminal methylenes-3H]spermidine, radioactivity is incorporated into a single cellular protein, eukaryotic initiation factor 4D (eIF-4D), through posttranslational synthesis of the amino acid hypusine (N epsilon-(4-amino-2-hydroxybuyly)lysine). The effect of spermidine depletion on this protein modification reaction was studied by high resolution two-dimensional gel electrophoresis. Factor eIF-4D containing both [3H]lysine and [3H]hypusine was detected as one of the major labeled cellular proteins on the fluorographic map of the proteins from Chinese hamster ovary cells that had been incubated with [3H]lysine. When these cells were depleted of spermidine by the use of DL-alpha-difluoromethylornithine before addition of [3H]lysine, no radiolabeling of this mature eIF-4D (hypusine form, Mr approximately 18,000; pI approximately 5.3) occurred. Instead, a new radiolabeled protein (Mr 18,000; pI 5.1) that contained [3H]lysine but no [3H]hypusine or [3H]deoxyhypusine was seen. This protein was identified as an eIF-4D precursor by comparison of the two-dimensional map of its tryptic peptides with that of the tryptic peptides from [3H]lysine-labeled eIF-4D. Further comparisons also suggest that additional post-translational modification processes are involved in the biogenesis of eIF-4D.  相似文献   

12.
A monoclonal antibody (45-2D9) produced after immunization of BALB/c mice with the c-Ha-ras NIH 3T3 tertiary transfectant (45-342) recognized a determinant expressed by the primary, three of three secondary, and one of three tertiary transfectants, but not by NIH 3T3 cells. The determinant was present on the cell surface and was distinct from murine leukemia virus gp70 by absorption studies. Biosynthetic labeling and immunoprecipitation studies with [35S]methionine and [3H]glucosamine demonstrated that 45-2D9 recognizes a 74,000 Mr glycoprotein with minor bands of 90,000 and 180,000 Mr on SDS-PAGE. Pulse chase studies demonstrated a 68,000 Mr precursor molecule that incorporated only [35S]methionine. The distribution of the epitope recognized by 45-2D9 was assessed by immunoperoxidase staining. The antigen was not detected on 10 primary and metastatic murine tumors or 11 transformed murine cell lines. However, a variety of surgically excised human tumors demonstrated intense staining, whereas staining of normal tissues was minimal or not detectable. Thus a human oncogene-transfected cell can express a new cell surface determinant apparently unrelated to the oncogene product, which is also selectively expressed by human tumors.  相似文献   

13.
Human bone cells grown in culture, representative of a preosteoblastic stage of maturation, produce an extracellular matrix composed of collagen, several noncollagenous glycoproteins, hyaluronan, and four distinct proteoglycans (PGs). The influence of donor age on the levels of expression of these molecules in vitro has not been well characterized. In this study, human bone cells derived from sources ranging from fetal to 60-year-old donors were grown in culture, radiolabeled for 24 h, and the amount of incorporation of [35S]sulfate into PGs, [3H]glucosamine into hyaluronan, [3H]leucine/proline into osteonectin, and [3H]proline into collagen was determined. Cell proliferation was most rapid in fetal-derived bone cells and decreased with increasing age. Total protein and PG synthesis also decreased with increasing age, falling to 1/3 and 1/4, respectively, of fetal levels after age 30. A large chondroitin sulfate PG (Mr approximately 600,000 Da) was the major fetal PG and its levels were highly correlated with cellular proliferation. [3H]Collagen and [35S]decorin levels increased with the increasing age of the donor, reached a maximum in puberty-derived cells, and decreased to 1/3 maximal levels after age 20. The heparan sulfate PG (Mr approximately 400,000 Da) exhibited steady-state levels regardless of donor age. [3H]Osteonectin and [35S]biglycan levels were high in fetal-derived cells and in cells derived from pubescent donors. The percentage of collagen and four proteoglycans associated with the cell layer pool changed with donor age. All fetal-derived PG core proteins possessed more N- and O-linked oligosaccharides than newborn or adult derived PGs.  相似文献   

14.
Inducibility of metallothionein throughout the cell cycle.   总被引:1,自引:0,他引:1  
Synchronized Chinese hamster cells were induced with ZnCl2 at multiple stages of the cell cycle and labeled with [35S]cysteine, and the 35S-labeled proteins were isolated and separated into metallothionein and nonmetallothionein fractions. Metallothionein was found to be inducible in all stages of the cell cycle and in G1-arrested cells.  相似文献   

15.
16.
The serine proteinase alpha-thrombin potently stimulates reinitiation of DNA synthesis in quiescent Chinese hamster fibroblasts (CCL39 line). 125I-labeled alpha-thrombin binds rapidly and specifically to CCL39 cells with high affinity (Kd approximately 4 nM). Binding at 37 degrees C was found to remain stable for 6 h or more during which time no receptor down-regulation, ligand internalization and/or degradation could be detected. The structure of alpha-thrombin receptors on CCL39 cells was identified by covalently coupling 125I-alpha-thrombin to intact cells using a homobifunctional cross-linking agent, ethylene glycol bis(succinimidyl succinate). By resolution in sodium dodecyl sulfate polyacrylamide gel electrophoresis we observed the specific labeling of a major alpha-thrombin-binding site of Mr approximately 150 000 revealed as a 125I-alpha-thrombin cross-linked complex of Mr approximately 180 000. Independent of chemical cross-linking, 125I-alpha-thrombin also formed a covalent complex with a minor, 35 000 Mr, membrane component identified as protease nexin. Two derivatives of alpha-thrombin modified at the active site are 1000-fold less than alpha-thrombin for mitogenicity. These two non-mitogenic derivatives bound to cells with similar affinity and maximal binding capacity as native alpha-thrombin, and affinity-labeled the receptor subunit of Mr 150 000. When present in large excess, during incubation of cells with alpha-thrombin, these binding antagonists were ineffective in blocking alpha-thrombin-induced DNA synthesis. These data suggest that the specific 150 000 Mr binding sites that display high affinity for alpha-thrombin do not mediate induction of the cellular mitogenic response.  相似文献   

17.
Changes in protein synthesis were examined during the cell cycle of Chinese hamster ovary cells by labeling synchronized cells at various times with [35S]methionine and separating the proteins on two-dimensional polyacrylamide gels. Several proteins, including tubulin, showed marked differences in their relative rates of synthesis during the cell cycle. A few proteins were found to be synthesized at a specific time during the cycle. In particular, a pair of proteins of approximately 21,000 daltons and isoelectric point of 5.5 were found to be synthesized only in late G2 and mitotic cells. Cells that were labeled during mitosis and then allowed to divide showed no trace of these proteins, indicating that their presence is transient and that they are likely involved in mitosis.  相似文献   

18.
Glycoproteins expressed on the luminal surfaces of microvascular endothelium derived from various murine organs were analyzed and compared with those expressed by cultured vascular endothelial cells. Cell-surface vascular proteins were radiolabeled in situ via intracardiac perfusion with lactoperoxidase/Na125I. Autoradiography confirmed that the radiolabel was restricted to the vessel lumen in most tissues. Controls contained 125I-labeled serum proteins to identify adsorbed serum components. Glycoproteins were analyzed by western enzyme-linked lectin analysis using detergent extracts of 125I-labeled microvessels isolated from different organs. The western transfers were probed with a panel of lectin-peroxidase conjugates to determine differences in protein glycosylation. The same transfers were also screened for exposed 125I-labeled cell-surface proteins by autoradiography. This dual analysis detected glycoprotein patterns unique for each organ. At least seven major proteins (Mr approximately 180 K, 130 K, 95 K, 80 K, 75 K, 60 K, 12 K) were common to microvessels derived from each organ; however, certain glycoproteins appeared to be expressed differentially in particular organs. For example, a Mr approximately 135 K WGA-binding glycoprotein was detected in brain microvessels, whereas another WGA-binding glycoprotein of Mr approximately 40 K was detected only in kidney. In lung microvessels, a Mr approximately 140 K WGA binding glycoprotein and a Mr approximately 55 K RCA-I-binding galactoprotein were expressed preferentially, and liver microvessels displayed Mr approximately 220 K protein and a Mr approximately 35 K PNA-binding galactoprotein. The cell-surface-iodinated protein profiles from in situ labeled microvessels were similar to profiles derived from cultured bovine aortic endothelial cells and several short-term endothelial cell cultures isolated from different organs. The results from this study suggest that organ-associated endothelia express glycoprotein fingerprints unique to each organ.  相似文献   

19.
Protein phosphorylation has been studied in Drosophila melanogaster 8.9 K cells following heat shock. By in vivo double labelling with [35S]-methionine and [32P]-orthophosphate, we observed that two proteins are newly phosphorylated among the 26,000-27,000 dalton heat-shock proteins group. These two proteins are also phosphorylated after ecdysterone treatment, albeit at a lower level. That this phosphorylation event is induced by two different treatments, i.e. ecdysterone, a key steroid hormone of development, and heat-shock, a cellular stress suggests a possible common pathway for those two events and an important function for the phosphorylated heat-shock proteins.  相似文献   

20.
Heparan sulfate proteoglycan from the Engelbreth-Holm-Swarm mouse tumor was previously separated into two forms: a high density form (Form HD) and low density form (Form LD). In this study, the two forms were radiolabeled either metabolically with [35S]sulfate or [3H]serine or chemically with 125I. Pulse-chase experiments with [35S]sulfate showed no clear precursor-product relationship between the two forms. Analyses of the labeled proteoglycan samples with heparitinase and chondroitinase ABC indicated that Form LD is a large proteoglycan containing heparan sulfate chains attached to a single core molecule (Mr = 450,000), whereas Form HD is a mixture of small proteoglycans with four different size core molecules (Mr = 34,000, 29,000, 27,000, and 21,000), most, if not all, of which bear both heparan sulfate (Mr = 60,000) and chondroitin sulfate (Mr = 17,000) chains. Glycosaminoglycan-enriched fragments obtained from Form HD by V8 protease digestion were also shown to contain both heparitinase-susceptible chains and chondroitinase ABC-susceptible chains. Tryptic peptide maps of 125I-labeled Form HD and the glycosaminoglycan-enriched fragments derived therefrom were quite different from the corresponding maps for Form LD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号