首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-Methyl-D-aspartate stimulated a concentration-dependent release of endogenous dopamine from rat striatal slices. The threshold for activation was between 10 and 25 microM and reached a maximum at 1 mM. Release was completely blocked by magnesium or tetrodotoxin. Ethanol (10-200 mM) significantly inhibited the N-methyl-D-aspartate-stimulated release of dopamine by 20-45%, with half-maximal inhibition occurring at approximately 21 mM. Addition of ethanol plus increasing concentrations of magnesium resulted in a greater inhibition of N-methyl-D-aspartate-stimulated dopamine release than that observed with magnesium alone. However, this effect appeared to be due to a noninteractive additive effect of the two antagonists, as the IC50 value for magnesium inhibition was not significantly altered by ethanol. Glycine, which had no effect on dopamine release by itself, completely reversed the inhibitory effects of ethanol (25 mM) at low micromolar concentrations. These results suggest that ethanol may produce its effects in striatal slices by interfering with a glycine modulatory site of the N-methyl-D-aspartate receptor-ionophore complex.  相似文献   

2.
Dissociated brain cells were isolated from newborn rat pups and loaded with fura-2. These cells were sensitive to low N-methyl-D-aspartate (NMDA) concentrations with EC50 values for NMDA-induced intracellular Ca2+ concentration ([Ca2+]i) increases of approximately 7-16 microM measured in the absence of Mg2+. NMDA-stimulated [Ca2+]i increases could be observed in buffer with Mg2+ when the cells were predepolarized with 15 mM KCl prior to NMDA addition. Under these predepolarized conditions, 100 mM ethanol inhibited 25 microM NMDA responses by approximately 50%, which was similar to the ethanol inhibition observed in buffer without added Mg2+. Ethanol did not alter [Ca2+]i prior to NMDA addition. In the absence of Mg2+, 50 and 100 mM ethanol did not significantly alter the EC50 value for NMDA, but did inhibit NMDA-induced increases in [Ca2+]i in a concentration-dependent manner at 4, 16, 64, and 256 microM NMDA. Whereas NMDA-induced increases in [Ca2+]i were dependent on extracellular Ca2+ and were inhibited by Mg2+, the ability of 100 mM ethanol to inhibit 25 microM NMDA responses was independent of the external Ca2+ or Mg2+ concentrations. Glycine (1, 10, and 100 microM) enhanced 25 microM NMDA-induced increases in [Ca2+]i by approximately 50%. Glycine (1-100 microM) prevented the 100 mM ethanol inhibition of NMDA-stimulated [Ca2+]i observed in the absence of exogenous glycine. MK-801 (25-400 nM) inhibited 25 microM NMDA-stimulated rises in [Ca2+]i in a concentration-dependent manner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
F A Rassendren  P Lory  J P Pin  J Nargeot 《Neuron》1990,4(5):733-740
Pharmacological characterization of Zn2+ effects on glutamate ionotropic receptors was investigated in Xenopus oocytes injected with rat brain mRNA, using a double microelectrode, voltage-clamp technique. At low concentration, Zn2+ inhibited NMDA currents (IC50 = 42.9 +/- 1.3 microM) and potentiated both AMPA (EC50 = 30.0 +/- 1.2 microM) and desensitized kainate responses (EC50 = 13.0 +/- 0.1 microM). At higher concentrations, Zn2+ inhibited non-NMDA responses with IC50 values of 1.3 +/- 0.1 mM and 1.2 +/- 0.3 mM for AMPA and kainate, respectively. The potentiation of AMPA or quisqualate currents by Zn2+ was more than 2-fold, whereas that of the kainate current was only close to 30%. This potentiating effect of Zn2+ on AMPA current modified neither the affinity of the agonist for its site nor the current-voltage relationship. In addition, 500 microM Zn2+ differentially affected NMDA and non-NMDA components of the glutamate-induced response. The possible physiological relevance of Zn2+ modulation is discussed.  相似文献   

4.
The effects of ethanol on inducible prostaglandin production in RAW macrophages were investigated. Indomethacin (1 microM) or cycloheximide (1 microM) abolished prostaglandin E2 (PGE2) production induced by lipopolysaccharide (LPS, 1 microg/ml). Ethanol at concentrations from 100 mM to 600 mM concentration-dependently inhibited inducible PGE2 production, while ethanol only at higher concentrations (400 mM or more) showed cytotoxity to the cells. Cyclooxygenase-2 (COX-2) activity, estimated by transformation of exogenous arachidonic acid into PGE2, was not affected by ethanol (100-400 mM). LPS-induced expression of COX-2 mRNA was inhibited by ethanol (50-400 mM). On the other hand, protein expression of COX-2 by LPS was significantly increased by ethanol (100-400 mM). Ethanol alone at concentrations up to 600 mM did not induce expression of COX-2 protein. In a medium containing arachidonic acid (1 microM), ethanol at a low concentration (100 mM) did not significantly affect LPS-induced PGE2 production. These results suggest that ethanol shows diverse effects on the pathway of inducible PGE2 production in macrophages. Finally, ethanol may suppress utilization of arachidonic acid, resulting in reduction of inducible PGE2 production. Further study is needed to elucidate the mechanism of dissociation of ethanol effects on protein and mRNA expression.  相似文献   

5.
Measurements of calcium uptake and cyclic GMP production by cerebellar granule cells grown in primary culture demonstrated that ethanol preferentially inhibited N-methyl-D-aspartate (NMDA) receptor-gated cation channel function. Concentrations of ethanol as low as 10 mM inhibited NMDA-stimulated Ca2+ uptake by greater than 30%, and ethanol also inhibited NMDA-stimulated (Ca2+-dependent) cyclic GMP accumulation in a similar, dose-dependent manner. Responses to kainate were significantly less sensitive to ethanol. Studies using various concentrations of NMDA, as well as phencyclidine (PCP) and glycine, suggested that ethanol affected the "coagonist" binding site of the NMDA receptor-channel complex, rather than the PCP recognition site.  相似文献   

6.
Using cerebellar, neuron-enriched primary cultures, we have studied the glutamate receptor subtypes coupled to neurotransmitter amino acid release. Acute exposure of the cultures to micromolar concentrations of kainate and quisqualate stimulated D-[3H]aspartate release, whereas N-methyl-D-aspartate, as well as dihydrokainic acid, were ineffective. The effect of kainic acid was concentration dependent in the concentration range of 20-100 microM. Quisqualic acid was effective at lower concentrations, with maximal releasing activity at about 50 microM. Kainate and dihydrokainate (20-100 microM) inhibited the initial rate of D-[3H]aspartate uptake into cultured granule cells, whereas quisqualate and N-methyl-DL-aspartate were ineffective. D-[3H]Aspartate uptake into confluent cerebellar astrocyte cultures was not affected by kainic acid. The stimulatory effect of kainic acid on D-[3H]aspartate release was Na+ independent, and partly Ca2+ dependent; the effect of quisqualate was Na+ and Ca2+ independent. Kynurenic acid (50-200 microM) and, to a lesser extent, 2,3-cis-piperidine dicarboxylic acid (100-200 microM) antagonized the stimulatory effect of kainate but not that of quisqualate. Kainic and quisqualic acid (20-100 microM) also stimulated gamma-[3H]-aminobutyric acid release from cerebellar cultures, and kynurenic acid antagonized the effect of kainate but not that of quisqualate. In conclusion, kainic acid and quisqualic acid appear to activate two different excitatory amino acid receptor subtypes, both coupled to neurotransmitter amino acid release. Moreover, kainate inhibits D-[3H]aspartate neuronal uptake by interfering with the acidic amino acid high-affinity transport system.  相似文献   

7.
Ethanol has an inhibitory effect on some platelet functions, but the mechanisms by which it exerts this effect are not known. Using suspensions of washed platelets, we observed that ethanol (1-9 mg/ml) did not affect the aggregation of rabbit platelets stimulated with ADP (0.5-10 microM). When platelets were prelabelled with 5-hydroxy[14C]tryptamine, aggregation and secretion of granule contents in response to thrombin (0.01-0.10 unit/ml) were not inhibited by ethanol, but these responses to thrombin at lower concentrations (less than 0.01 unit/ml) were inhibited by ethanol (2-4 mg/ml). Platelets were prelabelled with [3H]inositol so that increases in inositol phosphates upon stimulation could be assessed by measuring the amount of label in these compounds. ADP-induced increases in IP (inositol phosphate) and IP2 (inositol bisphosphate) were not affected by ethanol. IP3 (inositol trisphosphate) was not changed by ADP or ethanol. Although ethanol did not affect the increases in IP, IP2 and IP3 caused by stimulation of platelets with thrombin at concentrations greater than 0.01 unit/ml, ethanol did inhibit the increases observed at 2 and 3 min in these inositol phosphates caused by lower concentrations of thrombin (less than 0.01 unit/ml). Since ADP did not cause formation of IP3 in rabbit platelets, and since no thromboxane B2 was detected in platelets stimulated with the lower concentrations of thrombin, it is unlikely that the inhibitory effect of ethanol in IP3 formation was due to effects on further stimulation of platelets by released ADP or by thromboxane A2. Ethanol may inhibit platelet responses to thrombin by inhibiting the production of the second messenger, IP3.  相似文献   

8.
In this study, the ethanol sensitivity of human N-methyl-D-aspartate (NMDA) receptors stably expressed in L(tk-) cells, or transiently expressed in HEK 293 cells and Xenopus oocytes was determined. NMDA receptor function was measured using fura-2 calcium imaging for L(tk-) cells, whole cell voltage-clamp for HEK 293 cells, and two-electrode voltage clamp for oocytes. Ethanol inhibited NMDA receptor function in all three expression system, but was less potent for receptors expressed in L(tk-) cells. NMDA receptors composed of NR1a/2B subunits were inhibited to a greater extent by ethanol than NR1a/2A receptors when expressed in L(tk-) cells and HEK 293 cells, but not in oocytes. These results suggest that the method of receptor expression and assay system used may influence the degree of ethanol inhibition of recombinant NMDA receptors.  相似文献   

9.
Chronic exposure of primary neuronal cultures to ethanol has been shown to potentiate N-methyl-D-aspartate (NMDA) receptor-mediated processes, such as nitric oxide (NO) formation and excitotoxicity. In the present study, we compared the effects of acute ethanol and acetaldehyde on NMDA receptor-mediated excitotoxicity and NO production in primary cultures of rat cortical neurons. The delayed cell death induced by NMDA (300 mM, 25 min) was evaluated by morphological examination and by measuring the release of the cytotoxic indicator, lactate dehydrogenase, in the culture media 24 hours after the NMDA exposure. The accumulation of nitrite, as an index of NO production, was also measured 24 hours after NMDA treatment. NMDA caused a dose-dependent cell death and nitrite accumulation, both effects were blocked by pretreatment of MK-801 (100 microM). Acute exposure to ethanol (1-1000 mM) or acetaldehyde (0.1-1 mM) for 35 minutes did not affect neuronal viability in the following 24-hr period. However, acute exposure to acetaldehyde (> or =10 mM) was neurotoxic. Neither ethanol nor acetaldehyde changed basal nitrite levels in the culture media. Acute ethanol (50-400 mM, 10 min) given before the NMDA treatment (25 min) resulted in a concentration-dependent suppression of the delayed cell death. The NMDA-induced NO production was, however, not affected by ethanol. Neither the NMDA excitotoxicity nor NO production was affected by acute ethanol given after NMDA treatment. Acute acetaldehyde (0.01-0.5 mM, 10 min) given before or after NMDA treatment had no effect on delayed NMDA neurotoxicity and NO production. Our data suggest that acute exposure to ethanol is not neurotoxic and is even protective against delayed NMDA-excitotoxicity when given before but not after NMDA treatment. Neither NO nor metabolism of ethanol to acetaldehyde is required for ethanol-mediated suppression of NMDA excititoxicity. Acetaldehyde, on the other hand, is toxic by itself at low concentrations (> or =10 mM). Furthermore, acute exposure to non-toxic concentrations of acetaldehyde could not protect cortical neurons against NMDA-induced excitotoxicity.  相似文献   

10.
MAP kinase signaling in diverse effects of ethanol   总被引:9,自引:0,他引:9  
Aroor AR  Shukla SD 《Life sciences》2004,74(19):2339-2364
Chronic ethanol abuse is associated with liver injury, neurotoxicity, hypertension, cardiomyopathy, modulation of immune responses and increased risk for cancer, whereas moderate alcohol consumption exerts protective effect on coronary heart disease. However, the signal transduction mechanisms underlying these processes are not well understood. Emerging evidences highlight a central role for mitogen activated protein kinase (MAPK) family in several of these effects of ethanol. MAPK signaling cascade plays an essential role in the initiation of cellular processes such as proliferation, differentiation, development, apoptosis, stress and inflammatory responses. Modulation of MAPK signaling pathway by ethanol is distinctive, depending on the cell type; acute or chronic; normal or transformed cell phenotype and on the type of agonist stimulating the MAPK. Acute exposure to ethanol results in modest activation of p42/44 MAPK in hepatocytes, astrocytes, and vascular smooth muscle cells. Acute ethanol exposure also results in potentiation or prolonged activation of p42/44MAPK in an agonist selective manner. Acute ethanol treatment also inhibits serum stimulated p42/44 MAPK activation and DNA synthesis in vascular smooth muscle cells. Chronic ethanol treatment causes decreased activation of p42/44 MAPK and inhibition of growth factor stimulated p42/44 MAPK activation and these effects of ethanol are correlated to suppression of DNA synthesis, impaired synaptic plasticity and neurotoxicity. In contrast, chronic ethanol treatment causes potentiation of endotoxin stimulated p42/44 MAPK and p38 MAPK signaling in Kupffer cells leading to increased synthesis of tumor necrosis factor. Acute exposure to ethanol activates pro-apoptotic JNK pathway and anti-apoptotic p42/44 MAPK pathway. Apoptosis caused by chronic ethanol treatment may be due to ethanol potentiation of TNF induced activation of p38 MAPK. Ethanol induced activation of MAPK signaling is also involved in collagen expression in stellate cells. Ethanol did not potentiate serum stimulated or Gi-protein dependent activation of p42/44 MAPK in normal hepatocytes but did so in embryonic liver cells and transformed hepatocytes leading to enhanced DNA synthesis. Ethanol has a 'triangular effect' on MAPK that involve direct effects of ethanol, its metabolically derived mediators and oxidative stress. Acetaldehyde, phosphatidylethanol, fatty acid ethyl ester and oxidative stress, mediate some of the effects seen after ethanol alone whereas ethanol modulation of agonist stimulated MAPK signaling appears to be mediated by phosphatidylethanol. Nuclear MAPKs are also affected by ethanol. Ethanol modulation of nuclear p42/44 MAPK occurs by both nuclear translocation of p42/44 MAPK and its activation in the nucleus. Of interest is the observation that ethanol caused selective acetylation of Lys 9 of histone 3 in the hepatocyte nucleus. It is plausible that ethanol modulation of cross talk between phosphorylation and acetylations of histone may regulate chromatin remodeling. Taken together, these recent developments place MAPK in a pivotal position in relation to cellular actions of ethanol. Furthermore, they offer promising insights into the specificity of ethanol effects and pharmacological modulation of MAPK signaling. Such molecular signaling approaches have the potential to provide mechanism-based therapy for the management of deleterious effects of ethanol or for exploiting its beneficial effects.  相似文献   

11.
Intracellular recordings were made in pontine slice preparations of the rat brain containing the locus coeruleus (LC). Ethanol at 100 mM, but not at 10 or 30 mM inhibited depolarizing responses to pressure-applied N-methyl-D-aspartate (NMDA) in LC neurons of ethanol-naive rats. Ethanol (100 mM) had a similar effect in LC neurons of ethanol-naive rats, of rats treated with ethanol for 14 days (3 g/kg daily, i.p.) and of rats treated with equicaloric amounts of saccharose (5 g/kg daily, i.p.). The blood concentration of ethanol was markedly decreased at 4 h, and was below the detection limit at 24 h after the last injection. Behavioral measurements in the open-field system demonstrated the development of tolerance in rats receiving ethanol for 14 days. Moreover, an anxiety-related reaction was shown to develop when the acute effect of the last ethanol injection vanished. Therefore, in subsequent in vitro experiments, ethanol (10 mM) was continuously present in the superfusion medium in order to mimic a steady blood concentration and to prevent a withdrawal-like situation. Under these conditions, ethanol (100 mM) still continued to inhibit the NMDA-induced depolarization in slices of untreated rats, but became ineffective in slices of ethanol-treated rats at 4 h after the last injection. By contrast, a supersensitivity to ethanol developed in brain slices at 24 h after the last ethanol injection. In conclusion, in vitro tolerance between systemically and locally applied ethanol at LC neurons could only be demonstrated when a low concentration of ethanol was added to the superfusion medium to simulate the blood concentration of this compound.  相似文献   

12.
13.
The acute effects of ethanol (20-60 mM) on L-arginine uptake and nitric oxide (NO) formation was investigated in human placental cotyledons perfused at constant flow. Ethanol (40 mM) decreased L-[3H]arginine uptake from 27.6 +/- 2.3 to 15.8 +/- 1.3 per cent (P < 0.05) of the injected dose and significantly enhanced NO levels in the perfusate from 0.88 +/- 0.11 to 2.80 +/- 0.39 microM. Ethanol also elicited the constriction of placental vessels. The effects of ethanol (20-60 mM) on L-arginine uptake and endothelial NO synthase (eNOS) activity were also investigated in cultured human umbilical vein endothelial cells (HUVEC). After 60 min of ethanol (40 mM) exposure, basal L-[3H]arginine uptake (4.7 +/- 0.3 pmol/microg protein/min) was inhibited by 60 per cent (P < 0.05). Basal eNOS activity in HUVEC determined under "no flow" (static) conditions was significantly increased (approximately 1.8 fold) by 60 mM ethanol. These data are consistent with a stimulatory effect of ethanol on eNOS activity in both basal and flow-stimulated conditions, which may serve a protective role against its vasoconstrictive acute effect. While acute ethanol administration inhibits L-arginine uptake, the present results do not allow us to speculate on the effects of chronic ethanol exposure on NO formation in the fetoplacental unity.  相似文献   

14.
The Xenopus oocyte expression and recording system has allowed a detailed analysis of the physiology and pharmacology of neuronal ion channels including their sensitivity to ethanol. It is important however, to ascertain the effects of a particular drug on the channels inherently expressed by oocytes to ensure that drug effects ascribed to the expressed recombinant receptors are manifested solely through those receptors. In this study, the effects of ethanol were determined on three endogenous currents that can be elicited in oocytes and other cells by various manipulations. The inward cation current, IC, was activated by perfusing naive oocytes with a divalent-free recording solution. Ethanol (25-100 mM) modestly inhibited IC with 100 mM ethanol producing a 7-8% inhibition of steady state currents. The store-operated or capacitative calcium current (I(SOC)) was activated in thapsigargin-treated oocytes by switching from a calcium-free solution to one containing 10 mM calcium. In thapsigargin-treated oocytes also injected with EGTA to block calcium-activated chloride currents, ethanol (100 mM) had no effect on the store-operated calcium current. In contrast, ethanol (10-100 mM) dose-dependently inhibited the calcium-dependent chloride current (I(Cl(Ca)) in thapsigargin-treated oocytes. A voltage-jump protocol was used to separate the two components of I(Cl(Ca)), I(Cl-1) and I(Cl-2). Under these conditions, ethanol (100 mM) inhibited I(Cl-1) currents to a greater extent (38%) than it did I(Cl-2) currents (14%). These results show that Xenopus oocytes express endogenous ion channels that are differentially sensitive to ethanol.  相似文献   

15.
Mechanisms of the inhibitory effect of ethanol on acetaminophen hepatotoxicity are controversial. We studied the effects of ethanol and acetaldehyde, an oxidative metabolite of ethanol, on NADPH-dependent acetaminophen-glutathione conjugate production in liver microsomes. Ethanol at concentrations as low as 2mM prevented the conjugate production noncompetitively. Acetaldehyde also inhibited acetaminophen-glutathione conjugate production at concentrations as low as 0.1mM that is comparable with those observed in vivo after social drinking. Acetaldehyde may be involved in ethanol-induced inhibition of acetaminophen hepatotoxicity.  相似文献   

16.
Park PH  Aroor AR  Shukla SD 《Life sciences》2006,79(25):2357-2363
Angiotensin II plays a role in both liver cell proliferation and liver injury but the effects of ethanol on angiotensin II signaling in liver are not clearly understood. We have investigated the role of Ras in ethanol modulation of p42/p44 mitogen-activated protein kinase (MAPK) stimulated by angiotensin II (Ang II) in primary cultures of rat hepatocytes. Hepatocytes were incubated with ethanol (100 mM) for 24 h, then stimulated with Ang II (100 nM). The level of p42/p44 MAPK phosphorylation was measured by Western blot analysis and Ras activation was assessed by specific binding of Ras-GTP (activated form) to a GST-RBD fusion protein containing Ras-binding domain (RBD) of Raf-1. Ethanol potentiated p42/p44 MAPK activation by Ang II, whereas ethanol alone did not significantly affect phosphorylation of p42/p44 MAPK. Ang II increased Ras activity by about 2 fold. Ethanol exposure increased Ang II stimulated Ras activity by an additional about 2 fold. Ethanol alone elicited a small increase in basal Ras activity. Pretreatment with manumycin A (10 microM), a Ras farnesylation inhibitor, partially blocked both Ang II-activated and ethanol-potentiated MAPK activities. These data provided the first evidence that ethanol potentiation of Ang II stimulated p42/p44 MAPK is mediated, in part, by Ras in hepatocytes.  相似文献   

17.
Cyclic AMP phosphodiesterase activity was measured in vivo after microinjection of [3H]cAMP into intact Xenopus oocytes. This activity was inhibited by extracellular application of methylxanthines, and the dose-dependent inhibition of phosphodiesterase activity correlated with the abilities of isobutylmethylxanthine and theophylline to inhibit oocyte maturation induced by progesterone, with IC50 values of approximately 0.3 and 1.5 mM, respectively. Insulin stimulated in vivo phosphodiesterase activity measured after microinjection of 200 microM [3H]cAMP in a time- and dose-dependent fashion without affecting phosphodiesterase activity measured after microinjection of 2 microM [3H]cAMP. Although progesterone alone had no effect on in vivo phosphodiesterase activity, low concentrations of progesterone (0.01 microM) accelerated the time course of insulin stimulation of both phosphodiesterase activity and oocyte maturation. The EC50 for stimulation of in vivo phosphodiesterase activity by insulin correlated with the IC50 for inhibition of oocyte membrane adenylate cyclase activity measured in vitro (2 and 4 nM, respectively). Twenty-fold higher concentrations of insulin were required to stimulate oocyte maturation. In contrast, insulin-like growth factor 1 stimulated in vivo phosphodiesterase, inhibited in vitro adenylate cyclase, and induced oocyte maturation at concentrations of 0.3-1.0 nM. These results demonstrate a dual regulation of oocyte phosphodiesterase and adenylate cyclase by insulin and insulin-like growth factor 1.  相似文献   

18.
T L Smith 《Life sciences》1990,47(20):PL115-PL119
Both ethanol and neurotensin produce sedation and hypothermia. When administered in combination the behavioral effects of these two substances are potentiated. In order to better understand the biochemical nature of this interaction, the direct effects of ethanol on neurotensin receptors and an associated signal transduction process were determined in NIE-115 neuroblastoma cells. Ethanol in physiologically relevant concentrations (50mM) significantly reduced neurotensin stimulated [3H]inositol phosphate production while having no effect on the specific binding of [3H]neurotensin. In addition, ethanol up to 200 mM had no effect on GTPYS mediated [3H]inositol phosphate production. The results indicate that acute exposure to ethanol partially disrupts the normal coupling of activated neurotensin receptors to the guanine nucleotide binding protein associated with phospholipase C.  相似文献   

19.
L-DOPA is probably a transmitter and/or modulator in the central nervous system (1). L-DOPA methyl ester (DOPA ME) is a competitive L-DOPA antagonist. However, it remains to be clarified whether there exist L-DOPAergic receptors. In Xenopus laevis oocytes injected with rat brain poly(A)+ RNA, L-DOPA induced small inward currents with ED50 of 2.2 mM at a holding potential of -70 mV. The currents were abolished by kynurenic acid or CNQX. Similar L-DOPA-currents were seen in oocytes co-injected with AMPA receptors, GluRs1,2,3 and 4. In brain membrane preparations, L-DOPA inhibited specific binding of [3H]-AMPA with IC50 of 260 microM. This inhibition was not modified by 200 microM ascorbic acid, an antioxidant. L-DOPA did not inhibit binding of [3H]-ligands of MK-801, kainate, DCKA and CGP39653. DOPA ME and L-DOPA cyclohexyl ester, a novel, potent and competitive antagonist (2), inhibited specific binding of [3H]-MK-801 with respective IC50 of 1 and 0.68 mM, but elicited no effect on that of the other [3H]-ligands. With low affinities, L-DOPA acts on AMPA receptors, while competitive antagonists act on NMDA ion channel domain. L-DOPAergic agonist and antagonist may not interact on ionotropic glutamate receptors. DOPA ME-sensitive L-DOPA recognition sites (1) seem to differ from glutamate receptors.  相似文献   

20.
Ethanol, at low concentrations, specifically stimulates the Na(+)-dependent Ca2(+)-efflux in brain mitochondria. In addition, at higher concentrations, ethanol inhibits the Na(+)-independent Ca2(+)-efflux. The electrogenic Ca(+)-uptake system is not affected by ethanol. The specific stimulation of Na+/Ca2+ exchange reaches a maximum of 60% stimulation, with half-maximal stimulation at 130 mM ethanol. The inhibition of the Na(+)-independent efflux is proportional to the ethanol concentration, becoming significant only above 200 mM, with 50% inhibition at 0.5 M. The inhibition of the Na(+)-independent efflux is, in large part, due to an inhibition of the activation of the Cyclosporin-sensitive pore. Long-term ethanol-feeding had no effect on the Ca2+ transport systems and their sensitivity to acute ethanol treatment. It is suggested that the stimulation of the Na(+)-dependent Ca2(+)-efflux, which is the dominant Ca2+ efflux pathway in brain mitochondria, contributes to the intoxicating effects of ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号