首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular mechanisms governing the increased cell surface expression of major histocompatibility complex (MHC) class II molecules (Ia) on lead-treated mouse B cells was investigated. Lead has been shown to directly cause a selective, two-fold increase in the B cell's surface density of both products of the I region of the mouse MHC, I-A and I-E. In the present study, Western blot analysis showed that Pb increases the total cellular pool of I-A beta-chain by twofold. The increase in cellular I-A was not found to be due to increased messenger RNA (mRNA) for either the alpha- or the beta-chain of I-A. Biosynthetic labeling studies showed that Pb increases the translation or the stability of the Ia-associated invariant chain (Ii or gamma) and possibly the beta-chain of Ia. Collectively these results suggest that Pb increases the B cell's surface Ia by influencing translational or posttranslational regulation of Ia and/or Ia-associated chains.  相似文献   

2.
Previous work established that binding of the 11-5.2 anti-I-A(k) mAb, which recognizes the Ia.2 epitope on I-A(k) class II molecules, elicits MHC class II signaling, whereas binding of two other anti-I-A(k) mAbs that recognize the Ia.17 epitope fail to elicit signaling. Using a biochemical approach, we establish that the Ia.2 epitope recognized by the widely used 11-5.2 mAb defines a subset of cell surface I-A(k) molecules predominantly found within membrane lipid rafts. Functional studies demonstrate that the Ia.2-bearing subset of I-A(k) class II molecules is critically necessary for effective B cell-T cell interactions, especially at low Ag doses, a finding consistent with published studies on the role of raft-resident class II molecules in CD4 T cell activation. Interestingly, B cells expressing recombinant I-A(k) class II molecules possessing a β-chain-tethered hen egg lysosome peptide lack the Ia.2 epitope and fail to partition into lipid rafts. Moreover, cells expressing Ia.2(-) tethered peptide-class II molecules are severely impaired in their ability to present both tethered peptide or peptide derived from exogenous Ag to CD4 T cells. These results establish the Ia.2 epitope as defining a lipid raft-resident MHC class II conformer vital to the initiation of MHC class II-restricted B cell-T cell interactions.  相似文献   

3.
We have examined 25 cultured lines of mouse tumor cells for synthesis of the Ii, an Ia-associated polypeptide, by using an anti-Ii monoclonal antibody. Six of the T lymphomas tested did not produce detectable levels of Ii or of surface Ia antigens. Three B lymphomas and two plasmacytomas that express surface Ia antigens were found to synthesize the Ii. In addition, Ii was immunoprecipitated from two of five Ia- pre-B lymphomas, two of four Ia- plasmacytomas, two Ia- myeloid tumors, and two fibroblast cell lines including LM(TK-). Because Ia antigens have so far been found only on cells that also synthesize Ii, we suggest that the Ii is a marker of those cells that in certain states of development or activation express Ia antigens.  相似文献   

4.
B10.BR mice were injected i.v. with varying doses of recombinant IFN-gamma on three consecutive days. In tissue sections of 13 organs, the distribution of Ia antigens and Ia-associated invariant chain (Ii) was studied by using an immunoperoxidase technique. In the control animal, Ia and Ii were shown to be co-expressed in most tissues. However, on Kupffer cells, a small number of hepatocytes, and a subset of lymphocytes in lymph nodes and in the splenic red pulp only Ii, and no Ia, was detectable. In contrast, strongly Ia+ interdigitating reticulum cells of T-dependent areas of lymph nodes and spleen were only weakly stained for Ii. IFN-gamma treatment resulted in a dramatic increase of MHC antigen expression throughout the body, with striking differences in the inducibility of certain tissues for Ia and Ii: Bronchial epithelium was clearly induced to express the invariant chain, whereas Ia antigens remained entirely absent. Moreover, in kidney tubules and colon epithelium, Ii was induced more broadly than Ia. In contrast to the induction of Ii on endothelial cells of larger vessels in kidney, heart, and lungs, no de novo expression of Ia or Ii in capillary endothelial cells was observed. The number of detectable Ia+/Ii+ interstitial dendritic cells considerably increased upon exposure to IFN-gamma. Neither neurons nor glial cells were induced to MHC antigen expression. Our data demonstrate that IFN-gamma applied i.v. is a potent inducer or enhancer of Ia antigens and invariant chain in a variety of cell types.  相似文献   

5.
Quantitative variation in the expression of MHC-encoded class II (Ia) glycoproteins has been associated with stages of lymphocyte development and a number of disease conditions. We have used an avian MHC dosage model to study the regulation of Ia expression and the effects of quantitative variation in membrane Ia on B-cell development. Lymphocyte membrane expression of Ia glycoprotein molecules and the frequency of small-versus-large lymphocytes were examined in trisomic line chickens containing either two (disomic), three (trisomic), or four (tetrasomic) copies of the microchromosome encoding the MHC. This was accomplished by quantitative laser flow cytometry analysis of bursa-resident B lymphocytes from neonatal trisomic line chickens. The aneuploids (trisomics and tetrasomics) expressed more cell surface Ia than did normal disomic birds. Furthermore, the aneuploids exhibited a greater frequency of small B lymphocytes as compared to disomic chickens. Dual parameter analysis of Ia. quantity and cell size was undertaken to study B lymphocyte subpopulations in these birds. It was observed that the aneuploids had altered frequencies of two distinct subpopulations of cells: (1) an increased percentage of small cells which express high levels of Ia antigen and (2) a decreased percentage of large cells which express medium levels of Ia antigen. These findings support the view that MHC class II genes are regulated and expressed in a dosage-dependent manner. Therefore, increases in the number of MHC copies per cell result in the increased expression of Ia glycoprotein on bursa-resident B cells. The stepwise increase in membrane Ia on trisomic and tetrasomic B cells is correlated, and perhaps casually linked, with progressive degrees of alteration of developing B cell subpopulations in the bursa of aneuploid chicks. These events may ultimately alter the humoral immunity of the aneuploid animals.  相似文献   

6.
We demonstrated a tightly coordinated timing in the appearance of mRNA for the four class II (Ia) MHC chains, A alpha, A beta, E alpha, and E beta, and the Ia-associated invariant chain in a murine macrophage cell line after the addition of immune interferon (IFN-gamma) or of IFN-gamma-containing supernatants from Con A-stimulated spleen cells. The marked increase in mRNA levels for these molecules at approximately 8 hr after IFN-gamma addition contrasts sharply with the earlier, more gradual kinetics observed for class I (H-2) and beta 2-microglobulin mRNA. The difference in kinetics of IFN-gamma induction of class I and class II mRNA suggests differential regulation of the expression of Ia and H-2 antigens. The long lag period preceding detection of Ia mRNA raises the possibility that IFN-gamma may not directly mediate the increase in mRNA expression, but may act through an additional cellular intermediate.  相似文献   

7.
8.
9.
Ia antigen is a receptor for the superantigen staphylococcal enterotoxin A (SEA). Peptides I-A beta b(30-60), I-A beta b(50-70), I-A beta b(65-85), and I-A beta b(80-100) of the MHC class II antigen beta chain on mouse (H-2b) accessory cells were synthesized. Only I-A beta b(65-85) inhibited SEA binding to the mouse B-cell lymphoma line, A20 (H-2d) and the human Burkitt's lymphoma line, Raji (HLA-DR). The I-A beta b(65-85) sequence is a predicted alpha-helix along the hypothetical antigen binding cleft of the Ia molecule. I-A beta b(65-85) also directly and specifically bound both the intact SEA molecule and its Ia binding site, represented by the peptide SEA(1-45). The results suggest that I-A beta b region (65-85) is a necessary site for Ia molecular interaction with the superantigen SEA. Further, the data suggest that the same helical region of other Ia antigens binds SEA irrespective of haplotype and species.  相似文献   

10.
The surface marker expression of a spontaneous B lymphocyte leukemia discovered in a BALB/c mouse (BCL1) was examined and found to include a subset of markers known to occur on normal B lymphocytes. The tumor cells bore surface Ig that included both mu- and delta-chains associated with the lambda light chain. Alloantigens coded for within the murine MHC, including H-2D, H-2K, and I-region products, were identified on the tumor cells. Although normal B lymphocytes are thought to express products coded for within both the I-A and I-E subregions, the BCL1 expressed only normal amounts of I-E subregion products. In addition, the H-2 and Ia antigens revealed by 2-dimensional gel electrophoresis exhibited an abnormal pattern of post-translational modifications. The Fc, but not the complement-receptor, was present on the surface of tumor cells. The presence of IgD, Ia antigens, and the responsiveness to lipopolysaccharide (see subsequent paper) have led us to postulate that the BCL1 tumor represents a later differentiative stage than murine B lymphocyte tumors previously described.  相似文献   

11.
Previously, we showed that murine B cell membrane proteins undergo rearrangements in the plasma membrane to form new molecular associations in response to mitogenic stimulation. These complexes were covalently stabilized by photoreactive cross-linking agents and were analyzed by SDS PAGE. We have now identified certain complexes that involve class II MHC products, the Ia antigens. Upon stimulation of B cells with LPS, Ia surface molecules (as identified by radioimmunoprecipitation with polyclonal anti-Ia antiserum) enter into a molecular complex with a 95-kd membrane-associated protein (p95) to form a 200-kd complex that may be stabilized by the cross-linking agent dithiobisphenylazide (DTPA). This molecular association is not observed upon stimulation with mitogenic anti-Ig reagents, nor with the polyclonal B cell activator 8-bromoguanosine. p95 is not a disulfide-linked molecule itself, and by separate immunoprecipitation experiments we have established that it is not a component of surface Ig, transferrin receptor, the B cell Fc receptor, or CR1, the receptor for complement component C3b. Further analysis of the association of Ia antigens with surface proteins, with the use of monoclonal antibodies directed against I-A or I-E, has demonstrated that each subregion gene product forms a unique molecular association. Precipitation of radiolabeled lysates from LPS-activated B cells with anti-I-A reveals the aforementioned association with p95. In contrast, the I-E antigen apparently forms complexes with a multimer of a 15-kd protein to give complexes of 45, 60, 75, and 90 kd. When analyzed by two-dimensional diagonal gels (nonreducing/reducing), only the I-E bands are revealed by autoradiography, indicating that the putative p15 that associates with I-E may not be accessible to surface labeling. The disparate molecular associations for I-A and I-E suggest that the formation of these distinct protein complexes may be functionally related to a different role in the process of cellular activation for each of these Ia subregion gene products.  相似文献   

12.
Changes in Ia expression in mouse kidney during acute graft-vs-host disease   总被引:3,自引:0,他引:3  
We induced graft-vs-host disease (GVHD) in mice to determine whether immunologic stimuli could alter renal Ia expression. Two strain combinations were used: B6.C-H-2bm12 into C57BL/6, an I-A mutation difference, and A.SW into A.TL, differing in the I and D regions of H-2. By day 10 after allogeneic reconstitution of lethally irradiated recipients with bone marrow and spleen cells, the recipients had developed acute GVHD, as measured by their spleen to body weight ratio. Histologic examination revealed focal interstitial infiltrates of mononuclear cells in the kidneys. The expression of host Ia in these kidneys was increased up to 10-fold, as measured by absorption, and indirect immunofluorescence indicated that certain renal tubule cells had become strongly positive, suggesting that these were the principal sites of the increase in Ia expression. Similar increases were not observed in donor Ia. Tubule cells may have become Ia positive by passive uptake, or more probably, by the increase of Ia biosynthesis in cells that usually synthesize little or no Ia. Lethal irradiation without reconstitution tended to decrease renal Ia expression, as assessed by absorption and immunofluorescence. The results indicate that renal Ia expression, particularly in renal tubules, can be altered by changes in the immune system, raising the possibility of a role for such altered Ia expression in autoimmune or alloimmune responses involving the kidney.  相似文献   

13.
14.
15.
When MHC congenic and recombinant mice are inoculated with Torpedo acetylcholine receptors (AChR) with adjuvants, the magnitude of autoantibody responses to muscle AChR and the defect of neuromuscular transmission closely parallel in vitro lymphocyte proliferative responses to Torpedo AChR. All of these responses are controlled by gene(s) at the I-A subregion of the H-2 complex. Data presented in this report confirm in back-cross mice that T lymphocyte proliferative responses to AChR are controlled by a Mendelian dominant gene linked to H-2, at the I-A subregion. Lymphocyte responses were eliminated by blocking Ia antigens on lymph node cell surfaces with appropriate anti-I-A alloantisera and by removal of adherent cells. A spontaneous mutation at the I-A subregion in the B6 strain, which resulted in structural alteration of the A beta chain of Ia, converted high responsiveness to AChR to a state of low responsiveness. These data implicate a macrophage-associated Ia molecule in induction of autoimmune responses to AchR, probably in the presentation of AChR to helper T lymphocytes that thereby help B lymphocytes to differentiate into anti-AChR antibody-forming cells.  相似文献   

16.
The surface expression of class II major histocompatibility molecules (immune associated or Ia antigens) is an acquired property of macrophages, essential to their ability to interact effectively with T lymphocytes. Surface expression of Ia is induced by stimulants such as interferon-gamma and is suppressed by agents such as lipopolysaccharide (LPS). Recent studies on several cultured cell lines indicate that interferon-gamma can heighten cellular levels of mRNA encoding Ia, and the level of such mRNA may represent an important regulatory focus for controlling expression of surface Ia. Murine peritoneal macrophages were treated with interferon-gamma and/or LPS and expression of Ia mRNA determined by Northern blot analysis with a probe specific for the murine beta-chain of I-A. mRNA specific for I-A beta was not detectable in explanted macrophages obtained from sites of sterile inflammation but was induced by treatment of purified recombinant interferon-gamma. This effect was dose dependent and was optimal by 24 hr after stimulation. Ia-specific mRNA preceded the surface expression of Ia as monitored by a radioimmunoassay using a monoclonal antibody specific for I-A beta. When a physiologic dose of LPS was added concomitantly with the interferon-gamma, the time course of induction if Ia-specific mRNA was not altered, but the amount of such mRNA detected was suppressed 40 to 80%. This effect was dependent on the dose of LPS, and the levels of mRNA correlated closely with subsequent surface expression of Ia. The ability of LPS to suppress both mRNA and cell surface Ia expression required that the suppressive agent be added within 12 hr of the inducing stimulus. This is the time frame during which accumulation of mRNA occurs. Thus the data demonstrates that accumulation of specific mRNA is a major regulatory focus governing expression of Ia both by interferon-gamma and LPS.  相似文献   

17.
The modulation of membrane Ia on human B lymphocytes   总被引:2,自引:0,他引:2  
Using flow cytometry techniques, changes in surface Ia (DR and DS) expression on human B lymphocytes were correlated with changes in the cell cycle following stimulation with anti-mu. The effect of interleukin (IL)-1, IL-2, B-cell growth factor (BCGF), and interferons on Ia expression on resting B cells was also examined. A population of resting B lymphocytes was cultured in vitro with 100 micrograms/ml of anti-mu and immunofluorescently stained for DR and DS at various times following stimulation. Detectable increases in DR and DS expression were found within 8 hr, and the major increases (twofold and fourfold) in DR and DS expression occurred over the next 48 hr. Using cell cycle inhibitors and propidium iodide staining, it was demonstrated that the enhanced DR and DS expression following anti-mu stimulation began during G0 to G1 transition and increased as the cells progressed through G1 phase. During S and G2/M phases, there were minimal further increases in surface Ia. Although prolonged exposure of B cells to anti-mu was required for cellular activation, cell size enlargement, and progression into S phase, a brief exposure to anti-mu, insufficient for cellular activation, markedly enhanced Ia expression. Thus anti-mu-stimulated resting human B lymphocytes rapidly increase their surface Ia expression. This increase occurs predominantly prior to entrance into S phase and can occur in the absence of significant cellular activation. Interferons have been reported to modulate surface Ia expression on a human lymphoid cell line and on monocytes and supernatants with BCGF activity to enhance surface Ia expression on murine B cells; however, neither alpha-interferon, gamma-interferon, IL-1, IL-2, nor BCGF modified surface DR expression on normal resting human B cells.  相似文献   

18.
LT-85 is an alveologenic adenocarcinoma of C3Hf/HeN mice. Comparisons of the in vitro and in vivo surface properties of these cells revealed that under normal conditions, they expressed I-A and I-E antigens iv vivo only. By using clonally derived cells, it was established that this phenomenon was not due to the selection of an Ia antigen-positive tumor cell subpopulation, but resulted from phenotypic conversion of Ia antigen-negative tumor cells. These tumor cells and 1053 cells (a fibrosarcoma of C3H/HeN MTV- mice) could, however, be induced to express I-A, I-E, and much higher levels of H-2 antigens in vitro by co-culturing them with spleen cells from LT-85 tumor-bearing C3H/HeN MTV- mice. In vitro induction of Ia and H-2 antigens did not result from contaminating splenocytes or from antigen transfer, because splenocytes from BALB/c (H-2d) mice immunized with A/J (H-2k/d) cells were able to induce the expression of Iak antigens by both tumor cell lines. It was found that this phenomenon was neither H-2-restricted nor antigen-specific. The results clearly indicated, however, that an immune response was required to generate phenotypic conversion of the tumor cells, both in vivo and in vitro. It was further found that soluble, rather than cellular, factors produced during an immune response induced the expression of Ia antigens by LT-85 and 1053 tumor cells. In contrast to what has been reported about the induction of Ia antigens on macrophages and normal epithelial and endothelial cells, the induction of Ia antigens on LT-85 and 1053 cells did not appear to require T cells, and did not involve gamma-interferon. These findings demonstrate that some tumor cells are capable of altering their MHC antigen phenotype in response to factors produced during an immune response in vivo or in vitro. Because of the involvement of Ia antigens in several aspects of immune phenomena, the ability of tumor cells to differentially express Ia antigens in response to environmental factors may have profound effects on host-tumor interactions. Furthermore, the differences seen in the phenotypes of tumor cells grown in vitro and in vivo suggest that in vitro methodologies of tumor cell characterization may not present a complete picture of the natural state of the tumor cell surface.  相似文献   

19.
The levels of class II major histocompatibility complex (MHC) antigens (la antigens) on cells of a cultured B lymphoma line (WEHI-279) were significantly increased after 24 hr incubation with medium conditioned by concanavalin A-stimulated mouse or rat spleen cells, or by an azobenzenearsonate- (ABA) specific T cell clone that had been stimulated with ABA-coupled spleen cells or concanavalin A. The levels and properties of the la-inducing activity correlated with those of interferon-gamma (IFN-gamma) measured by inhibition of virus plaque formation. Both the la-inducing activity and the IFN-gamma from the T cell clone had an apparent m.w. of 40,000 determined by gel filtration, were sensitive to treatment with trypsin or exposure to pH 2, but were stable to heat (56 degrees C, 1 hr). The induction of la antigens on WEHI-279 cells was dose-dependent, and the maximum response occurred at a concentration corresponding to 1 to 2 U/ml of antiviral activity. This T cell-derived IFN-gamma-like molecule also increased the expression of cell surface la antigens on another B cell line (WEHI-231), and cell lines of macrophage (J774) and myeloid (WEHI-3B and WEHI-265) origin. Furthermore, in all cases the levels of class I MHC (H-2K or H-2D) antigens were also increased. Similar patterns of induction of Ia and H-2 antigens were obtained with supernatants containing IFN-gamma produced by a monkey cell line (COS) that had been transfected with a plasmid bearing the cloned murine IFN-gamma gene. This activity was sensitive to pH 2 and was not present in the supernatant from COS cells that were not transfected with the murine IFN-gamma gene. These results established that IFN-gamma is the T cell-derived molecule that induces the enhanced expression of Ia and H-2 antigens on B cells and macrophages. A major physiologic role of IFN-gamma may be to regulate immune function through the enhanced expression of MHC antigens.  相似文献   

20.
Ia antigens in mouse skin are predominantly expressed on Langerhans cells.   总被引:10,自引:0,他引:10  
We have investigated the expression of products of the mouse major histocompatibility complex (MHC) on BALB/c and A/J epidermal cells. By using reagents with specificity for various products of the MHC in an indirect immunofluorescence procedure, we found that H-2 antigens are expressed on the vast majority of epidermal cells. Ia antigens, by contrast, are present on only 2.4 to 6.9% of all epidermal cells. These Ia-bearing cells bear a receptor for the Fc portion of IgG and ultrastructurally exhibit the characteristics of Langerhans cells. Ia antigens on Langerhans cells are encoded for by at least the I-A and I-E/C subregions of the MHC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号