首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemical mechanisms underlying visible bioluminescence in the fungus Mycena chlorophos are not clear. A combination of dihydronicotinamide adenine dinucleotide phosphate (NADPH) and hispidin, which has been reported to increase the intensity of in vitro luminescence in crude cold‐water extracts prepared from the bioluminescent fruiting bodies of M. chlorophos, exhibited potential bioluminescence activation in the early bioluminescence stages, in which the bioluminescence was ultra‐weak, for living gills and luminescence activation for non‐bioluminescent gills, which was collapsed by freezing and subsequent thawing, at all bioluminescence stages. These abilities were not evident in considerably bioluminescent gills. These abilities were blocked by trans‐4‐hydroxycinnamic acid and trans‐3,4‐dihydroxycinnamic acid, which were identified as in vivo bioluminescence‐activating components. Original bioluminescence and bioluminescence produced from the addition of trans‐4‐hydroxycinnamic acid and trans‐3,4‐dihydroxycinnamic acid in living gills were almost completely inhibited by 10 mM NaN3, whereas the luminescence produced form the combination of NADPH and hispidin in thawed non‐bioluminescent and living gills at the early weak bioluminescence stages was not inhibited by 10 mM NaN3. Thus, the combination of NADPH and hispidin plays different roles in luminescence systems compared with essential bioluminescence systems, and the combination of NADPH and hispidin was not essential for visible bioluminescence in living gills.  相似文献   

2.
The detection of specific bacterial pathogens, indicator microorganisms and antimicrobial substances, and the recovery of microorganisms from sub-lethal injury, are all aspects of importance to industry which are currently being targeted using in vivo bioluminescence. In all instances, a key requirement for the application of bioluminescence is the establishment of a strict correlation between in vivo bioluminescence and cell viability, as determined by colony counting on agar plates. Comparative studies for biocides (phenol, chlorhexidine diacetate, phenol thioether), for a virucide (hypochlorite) and for cellular recovery of S. typhimurium from sub-lethal injury, all indicate that such a correlation is valid. Furthermore, real-time measurements of in vivo bioluminescence reveal a major population of bacterial cells that retain functional intracellular biochemistry, but are defective in their ability to replicate post of freeze injury.  相似文献   

3.
Vibrio fischeri andV. harveyi possess cytochromes a, b, and c, whereasPhotobacterium leiognathi andP. phosphoreum also contain cytochrome d. In all, cytochrome a as well as some of c binds carbon monoxide. Carbon monoxide does not inhibit bioluminescence (in vivo or in vitro), but carbonyl cyanidem-chlorophenylhydrazone inhibits only in vivo bioluminescence. This inhibition is due to dissipation of the proton motive force which indirectly inhibits bioluminescence by interruption of aldehyde recycling. Bioluminescence is thereby indirectly coupled to the proton motive force.  相似文献   

4.

A bioluminescence assay was developed using the expression of the luxAB genes in Pseudomonas veronii to allow the efficacy of biocides incorporated into plasticised polyvinylchloride (pPVC) to be determined in situ. A maximum number of cells was found to adhere to the surface after 18 h as measured by bioluminescence, radiolabelling and viable cell counts. A positive correlation was found between the level of bioluminescence and numbers of viable cells attached to the pPVC. When the biocide 10, 10-oxybisphenoxyarsine (OBPA) was incorporated into the pPVC, both bioluminescence and viable cell number were reduced by ca 60% at a concentration of 750 ppm and by >99% at 2250 ppm. When the biocide 2,3,5,6-tetrachloro-4-(methylsulphonyl)pyridine (TCMP) was incorporated into the pPVC, no reduction in viability or bioluminescence was seen after 18 h. However, over a period of 72 h at a concentration of 2250 ppm TCMP, both viable cell number and bioluminescence decreased steadily after 36 h until after 72 h, both bioluminescence and viable cell counts were less than 1% of the initial values. The viability of attached cells can therefore be measured in situ in a sensitive real-time assay by measuring bioluminescence allowing the efficacy of biocides incorporated into plastics to be compared.  相似文献   

5.
A genetically engineered strain of P. putida mt-2 KG1206 used in this study contains the intact TOL plasmid and a plasmid with the P m-lux gene, and bioluminescence was produced by direct (m-toluate and benzoate) and indirect inducers (toluene analogs). Much less bioluminescence was produced by benzoate and o-xylene among the tested inducers. This bioluminescence producing strain was used for the quantification of m-toluate in soil, and a quantification protocol for pollutant was developed for standardization. Values determined by bioluminescence were in the range of 75 (min.) ~158 (max.) % of their true concentration as determined by HPLC analysis. Statistical analysis indicates that this bioluminescence strain is useful for quantifying specific pollutant in environmental system. However, more investigation is required for mixture pollutants in the environment.  相似文献   

6.
The toxic dinoflagellate Alexandrium ostenfeldii is the only bioluminescent bloom-forming phytoplankton in coastal waters of the Baltic Sea. We analysed partial luciferase gene (lcf) sequences and bioluminescence production in Baltic A. ostenfeldii bloom populations to assess the distribution and consistency of the trait in the Baltic Sea, and to evaluate applications for early detection of toxic blooms. Lcf was consistently present in 61 Baltic Sea A. ostenfeldii strains isolated from six separate bloom sites. All Baltic Sea strains except one produced bioluminescence. In contrast, the presence of lcf and the ability to produce bioluminescence did vary among strains from other parts of Europe. In phylogenetic analyses, lcf sequences of Baltic Sea strains clustered separately from North Sea strains, but variation between Baltic Sea strains was not sufficient to distinguish between bloom populations. Clustering of the lcf marker was similar to internal transcribed spacer (ITS) sequences with differences being minor and limited to the lowest hierarchical clusters, indicating a similar rate of evolution of the two genes. In relation to monitoring, the consistent presence of lcf and close coupling of lcf with bioluminescence suggests that bioluminescence can be used to reliably monitor toxic bloom-forming A. ostenfeldii in the Baltic Sea.  相似文献   

7.
Dinoflagellate bioluminescence systems operate with or without a luciferin binding protein, representing two distinct modes of light production. However, the distribution, diversity, and evolution of the luciferin binding protein gene within bioluminescent dinoflagellates are not well known. We used PCR to detect and partially sequence this gene from the heterotrophic dinoflagellate Noctiluca scintillans and a group of ecologically important gonyaulacoid species. We report an additional luciferin binding protein gene in N. scintillans which is not attached to luciferase, further to its typical combined bioluminescence gene. This supports the hypothesis that a profound re‐organization of the bioluminescence system has taken place in this organism. We also show that the luciferin binding protein gene is present in the genera Ceratocorys, Gonyaulax, and Protoceratium, and is prevalent in bioluminescent species of Alexandrium. Therefore, this gene is an integral component of the standard molecular bioluminescence machinery in dinoflagellates. Nucleotide sequences showed high within‐strain variation among gene copies, revealing a highly diverse gene family comprising multiple gene types in some organisms. Phylogenetic analyses showed that, in some species, the evolution of the luciferin binding protein gene was different from the organism's general phylogenies, highlighting the complex evolutionary history of dinoflagellate bioluminescence systems.  相似文献   

8.
In order to quantify intracellular Staphylococcus aureus within a macrophage-like cell line by a bioluminescence technique, the mouse cell line J774 and opsonized Staphylococcus aureus were incubated together to allow phagocytosis to occur. Experiments using UV microscopy and fluorescent stained S. aureus were performed to determine an estimate of the mean intracellular bacterial numbers. For enumeration of intracellular bacteria by a bioluminescence technique, extracellular bacteria were removed by washing, the macrophages lysed mechanically and osmotically and treated with apyrase to remove somatic ATP. Bacterial cells were washed and the intracellular ATP measured by firefly luciferase bioluminescence in a luminometer. This new method of enumerating intracellular bacteria was compared to the conventional method of viable counts and found to correlate (r = 0.78). The bioluminescence assay developed was found to be a relatively rapid alternative method to the techniques currently used to enumerate intracellular bacteria and could prove advantageous in studies of intracellular killing and effects of antimicrobial agents on intracellular pathogens.  相似文献   

9.
《Chronobiology international》2013,30(10):1336-1344
Arachnocampa species, commonly called glowworms, are flies whose larvae use light to attract prey. Here we compare rhythmicity in two of the nine described species: the Tasmanian species, Arachnocampa tasmaniensis, which inhabits caves and wet forest, and the eastern Australian mainland species, A. flava, primarily found in subtropical rainforest. Both species show the same nocturnal glowing pattern in external (epigean) environments and the same inhibition of bioluminescence by light and both species show circadian regulation of bioluminescence. We find that the underlying circadian bioluminescence propensity rhythm (BPR) of the two species peaks at opposite phases of the day:night cycle. Larvae of A. flava, placed in constant darkness in the laboratory, bioluminesce during the subjective scotophase, typical of nocturnal animals, whereas A. tasmaniensis shows the opposite tendency, bioluminescing most intensely during the subjective photophase. In A. tasmaniensis, which are exposed to natural day:night cycles, light exposure during the day overrides the high bioluminescence propensity through negative masking and leads to a release of bioluminescence after dusk when the BPR is on the wane. A consequence is that A. tasmaniensis is able to start glowing at any phase of the light:dark cycle as soon as masking by light is released, whereas A. flava is locked into nocturnal bioluminescence. We suggest that the paradoxical BPR of A. tasmaniensis is an adaptation for living in the cave environment. Observations of bioluminescence in colonies of A. tasmaniensis located in the transition from a cave mouth to the dark zone show that glowing is inhibited by light exposure but a peak bioluminescence follows immediately after “dusk” at their location. The substantial difference in the circadian regulation of bioluminescence between the two species probably reflects adaptation to the cave (hypogean) habitat in A. tasmaniensis and the forest (epigean) habitat in A. flava. (Author correspondence: )  相似文献   

10.
Bioluminescence induced by multifarious stimuli has long been observed and is remains under investigation because of its great complexity. In particular, the exact mechanism underlying bioluminescence is not yet fully understood. This work presents a new experimental method for studying Noctiluca sp. bioluminescence under temperature change stimulation. It is a study of Noctiluca sp. bioluminescence using controlled temperature changes in a tank. A characteristic of this experiment is the large volume of water used (1 m3 in a tank of 2 × 1 × 1 m). Temperature changes were controlled by two methods. In the first, a flask filled with hot water was introduced into the tank and in the second, a water heater was used in the tank. Temperature changes were recorded using sensors. Noctiluca sp. bioluminescence was recorded using a Canon 5D Mark II and this allowed the characteristics of Noctiluca sp. bioluminescence under temperature change stimulation to be monitored. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
12.
A Francisella tularensis shuttle vector that constitutively expresses the Photorhabdus luminescens lux operon in type A and type B strains of F. tularensis was constructed. The bioluminescence reporter plasmid was introduced into the live vaccine strain of F. tularensis and used to follow F. tularensis growth in a murine intranasal challenge model in real-time by bioluminescence imaging. The results show that the new bioluminescence reporter plasmid represents a useful tool for tularemia research that is suitable for following F. tularensis growth in both in vitro and in vivo model systems.  相似文献   

13.
A laminar flow biofilm-monitoring system was used to determine the efficacies of three antifouling (AF) coatings and five fouling-release (FR) coatings againstVibrio harveyi attachment. On-line measurements of tryptophan fluorescence and bioluminescence from each coating, normalized to an upstream stainless steel coupon, were used to determine the effects of AF and FR surfaces on biofilm formation. The AF coatings consisted of 5, 10, and 35 wt% Sea Nine 211 (C9211) incorporated into a vinyl copolymer. Both the 10 and 35 wt% coatings significantly inhibited biofilm biomass development measured by tryptophan fluorescence compared to the stainless steel control.V. harveyi bioluminescence was significantly greater than tryptophan fluorescence in cells attached to these coatings, suggesting that bioluminescence expression may be a marker for cellular stress or toxicity in biofilms. Five different polydimethylsiloxane (PDMS) FR coatings did not inhibit biofilm formation under low flow conditions. However, four PDMS coatings demonstrated decreased biomass levels compared to stainless steel after exposure to a shear stress of 330 dynes cm–2. There was no toxic additive in these coatings; bioluminescence and tryptophan fluorescence were proportional.  相似文献   

14.
The large dinoflagellate, Pyrocystis fusiformis Murray, emits biolumtnescence on stimulation with dilute acid. The bioluminescence can be seen in the light microscope to originate in a spherical region just distal to the nucleus during the day and appears as a persistent glow which can be localized in an orange-brown sphere. At night, the bioluminescence, in response to stimulation, is a bright flash from microsources scattered throughout the cytoplasm. The orange sphere can no longer be seen nor does a bioluminescent glow originate from this central region on stimulation. This difference in the position of intracellular bioluminescence between day and night has allowed the identification in electron micrographs of structures which correspond to the source of bioluminescence during the day. Light is emitted from a spherical mass of vesicles which contain electron-dense short rods with rounded ends, sometimes crossed by electron-transparent narrow bands. At night, these vesicles can be recognized in the peripheral cytoplasm. It is proposed that these vesicles are the structural counterparts of the microsources of bioluminescence in P. fusiformis.  相似文献   

15.
Pyrocystis lunula Schütt is a unicellular photoautotrophic dinoflagellate, commonly found in marine environments, displaying circadian‐controlled bioluminescence. Because of this species' characteristics, effects of pollutants on bioluminescence in P. lunula may make for an easy and simple bioassay that would be valuable for toxicity testing and the protection of coastal resources. This study therefore investigated the short‐term effects of metals and organic pollutants on the recovery of the bioluminescent potential in P. lunula. Recovery of bioluminescence was strongly inhibited in a dose‐dependent manner by all reference contaminants tested, the system being most sensitive to copper and cadmium (4‐h IC50s 0.96 and 1.18 μM, respectively), followed by phenanthrene, lead, SDS, and nickel (4‐h IC50s 1.64, 12.8, 15.6, and 73.1 μM, respectively), whereas relatively high concentrations of phenol were needed to elicit a response (4‐h IC50 1.64 mM). Except for exposure to lead and nickel, the inhibitory effects of cadmium, copper, and all organic pollutants were reversible, with P. lunula recovering 80%–100% of its bioluminescence potential after a period of 72 h in uncontaminated medium. Our results show that the restoration of bioluminescence in P. lunula is sensitive to the reference contaminants tested and obtains highly reproducible results.  相似文献   

16.

A modified Robbins device (MRD) has frequently been used as a model system to study adhesion and biofilm formation. This study investigates the reproducibility of attachment and whether a statistically significant gradient of adhesion exists along the 25 sampling ports of a MRD. A simple, quantitative, non‐destructive, bioluminescence assay was developed in order to measure attachment of bioluminescent P. veronii BL146bio cells to plastic discs of Thermanox? in newly modified Robbins devices (nMRD). No statistically significant difference in mean bioluminescence values occurred between pairs of nMRDs run in parallel, but there was a significant difference in bioluminescence values between different batches of bacteria (p < 0.05). Generalised Linear Modelling showed that the position of the sample disc influenced the numbers attaching. In 50% of devices a significant positive gradient of attachment occurred and bioluminescence values varied from disc 1 to disc 25 by 29.6–58.0%. In the other 50% of nMRDs there was a smaller, non‐significant gradient. A disc sampling regime was devised to take this gradient into account and used to prove a positive correlation between bioluminescence and numbers of viable P. veronii BL146bio cells during a 6h biofilm accumulation period.  相似文献   

17.
Mycena chlorophos is an oxygen‐dependent bioluminescent fungus. The mechanisms underlying its light emission are unknown. A component that increased the bioluminescence intensity of the immature living gills of M. chlorophos was isolated from mature M. chlorophos gills and chemically characterized. The bioluminescence‐activating component was found to be trans‐3,4‐dihydroxycinnamic acid and its bioluminescence activation was highly structure‐specific. 13C‐ and 18O‐labelling studies using the immature living gills showed that trans‐3,4‐dihydroxycinnamic acid was synthesized from trans‐4‐hydroxycinnamic acid in the gills by hydroxylation with molecular oxygen as well as by the general metabolism, and trans‐3,4‐dihydroxycinnamic acid did not produce hispidin (detection‐limit concentration: 10 pmol/1 g wet gill). Addition of 0.01 mM hispidin to the immature living gills generated no bioluminescence activation. These results suggested that the prompt bioluminescence activation resulting from addition of trans‐3,4‐dihydroxycinnamic acid could not be attributed to the generation of hispidin. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The fungal bioluminescence pathway (FBP) was identified from glowing fungi, which releases self-sustained visible green luminescence. However, weak bioluminescence limits the potential application of the bioluminescence system. Here, we screened and characterized a C3′H1 (4-coumaroyl shikimate/quinate 3′-hydroxylase) gene from Brassica napus, which efficiently converts p-coumaroyl shikimate to caffeic acid and hispidin. Simultaneous expression of BnC3′H1 and NPGA (null-pigment mutant in A. nidulans) produces more caffeic acid and hispidin as the natural precursor of luciferin and significantly intensifies the original fungal bioluminescence pathway (oFBP). Thus, we successfully created enhanced FBP (eFBP) plants emitting 3 × 1011 photons/min/cm2, sufficient to illuminate its surroundings and visualize words clearly in the dark. The glowing plants provide sustainable and bio-renewable illumination for the naked eyes, and manifest distinct responses to diverse environmental conditions via caffeic acid biosynthesis pathway. Importantly, we revealed that the biosynthesis of caffeic acid and hispidin in eFBP plants derived from the sugar pathway, and the inhibitors of the energy production system significantly reduced the luminescence signal rapidly from eFBP plants, suggesting that the FBP system coupled with the luciferin metabolic flux functions in an energy-driven way. These findings lay the groundwork for genetically creating stronger eFBP plants and developing more powerful biological tools with the FBP system.  相似文献   

19.
Dinoflagellate bioluminescence serves as a whole‐cell reporter of mechanical stress, which activates a signaling pathway that appears to involve the opening of voltage‐sensitive ion channels and release of calcium from intracellular stores. However, little else is known about the initial signaling events that facilitate the transduction of mechanical stimuli. In the present study using the red tide dinoflagellate Lingulodinium polyedrum (Stein) Dodge, two forms of dinoflagellate bioluminescence, mechanically stimulated and spontaneous flashes, were used as reporter systems to pharmacological treatments that targeted various predicted signaling events at the plasma membrane level of the signaling pathway. Pretreatment with 200 μM Gadolinium III (Gd3+), a nonspecific blocker of stretch‐activated and some voltage‐gated ion channels, resulted in strong inhibition of both forms of bioluminescence. Pretreatment with 50 μM nifedipine, an inhibitor of L‐type voltage‐gated Ca2+ channels that inhibits mechanically stimulated bioluminescence, did not inhibit spontaneous bioluminescence. Treatment with 1 mM benzyl alcohol, a membrane fluidizer, was very effective in stimulating bioluminescence. Benzyl alcohol‐stimulated bioluminescence was inhibited by Gd3+ but not by nifedipine, suggesting that its role is through stretch activation via a change in plasma membrane fluidity. These results are consistent with the presence of stretch‐activated and voltage‐gated ion channels in the bioluminescence mechanotransduction signaling pathway, with spontaneous flashing associated with a stretch‐activated component at the plasma membrane.  相似文献   

20.
Bioluminescence intensity acts as the indicator of the functional state of a plankton community. Data on bioluminescence intensity, zooplankton biomass, and chlorophyll a from the expeditions to the tropical and subtropical Atlantic Ocean were analyzed. The regression models implied a ~10-fold decline of bioluminescence intensity [bioluminescence potential (BP)] and zooplankton biomass for the 46 year time range from 1970 to 2016. The correlation was low between chlorophyll a (the indicator of phytoplankton biomass) and BP, but it was significant for the zooplankton biomass BP annual time series. The decline of BP was associated with the decreasing abundance of bioluminescent zooplankton, and increasing global warming-driven temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号