首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
1. 31P NMR was used to characterize phosphate pools in perchloric acid extracts of muscles with various composition of muscle fibre types. 2. The white m. pectoralis major (MPM) of chickens 15 min post mortem is characterized by 1.6-times higher relative content of phosphocreatine (PCr) in comparison with mixed leg muscle (LM) of this species. The glycerophosphorylcholine (GPC) does not occur in MPM at NMR detectable level in contrast to the leg muscles. Relative amounts of other phosphates are similar in both muscles. 3. The intermediate MPM of pigeons as well as mixed LM of this species contain 15 min post mortem a very small amount of PCr and ATP but a large amount of inorganic phosphate. Relative content of GPC is higher in leg muscles than in intermediate MPM. 4. Muscles with higher occurrence of white fibres contain relatively more PCr than muscles with lower occurrence of white fibres. 5. The occurrence of GPC seems to be connected with metabolism of red muscle fibres.  相似文献   

2.
Phase-modulated rotating-frame imaging (p.m.r.f.i.), a localization technique for 31P-n.m.r. spectroscopy, has been applied to obtain information on the heterogeneity of phosphorus-containing metabolites and pH in the skeletal muscle of control and streptozotocin-diabetic rats. Using this method, the metabolic changes in four spatially resolved longitudinal slices (where slice I is superficial and slice IV is deep muscle) through the ankle flexor muscles have been investigated at rest and during steady-state isometric twitch-contraction at 2 Hz. At rest, intracellular pH was lower, and phosphocreatine (PCr)/ATP was higher, throughout the muscle mass in diabetic compared with control animals. The change in PCr/ATP in diabetic muscle correlated with a decrease in the chemically determined ATP concentration. During the muscle stimulation period, the decrease in pH observed in diabetic muscle at rest was maintained, but not exacerbated, by the contractile stimulus. Stimulation of muscle contraction caused more marked changes in PCr/(PCr + Pi), PCr/ATP and Pi/ATP in the diabetic group. These changes were most evident in slice III, which contains the greatest proportion of fast glycolytic-oxidative (type IIa) fibres, in which statistically significant differences were observed for all metabolite ratios. The results presented suggest that some degree of heterogeneity occurs in diabetic skeletal muscle in vivo with respect to the extent of metabolic dysfunction caused by the diabetic insult and that regions of the muscle containing high proportions of type IIa fibres appear to be most severely affected.  相似文献   

3.
The concentrations of ATP, phosphocreatine (PCr), creatine, and lactate were determined in muscle biopsy samples frozen immediately or after a delay of 1-6 min. During the delay the samples were exposed to normal air or a gas mixture of 6.5% CO2-93.5% O2. The ATP content was unchanged, but PCr increased significantly from 72 mmol after rapid freezing to 85 mmol X kg dry muscle-1 during the 1st min in air. The lactate concentration increased (2.8 to 5.2 mmol X kg-1). If muscles were made anoxic by circulatory occlusion for 4-6 min before sampling, no increase in PCr was observed. Direct homogenization of fresh tissue in perchloric acid gave the same ATP, PCr, and lactate contents as frozen samples. It is concluded that the ATP and PCr contents in muscle are unaffected by freezing but that the biopsy procedure activates the energy utilization processes resulting in PCr decrease. It is suggested that the muscle PCr content after a 1-min delay in tissue freezing corresponds to the level in resting fresh muscle.  相似文献   

4.
A sensitive and reproducible method for the determination of adenine nucleotides (ATP, IMP) and creatine compounds [creatine (Cr), phosphocreatine (PCr)] in freeze–dried single human muscle fibre fragments is presented. The method uses isocratic reversed-phase high-performance liquid chromatography of methanol extracts. Average retention times (min) of ATP, IMP and PCr, Cr from standard solutions were 10.6±0.42, 2.11±0.06 (n=6) and 10.5±0.31 and 1.19±0.02 (n=9), respectively. Detection limits in extracts from muscle fibre fragments were 2.0, 1.0, 3.0 and 2.0 mmol/kg dm, respectively. The assay was found successful for analysis of fibre-fragments weighing ≥1 μg.  相似文献   

5.
Summary A quantitative histochemical technique was developed for determining the kinetics of the calcium-activated myosin ATPase (Ca2+-myosin ATPase) reaction in rat skeletal muscle fibres. Using this technique, the maximum velocity (Vmax) and the apparent Michaelis-Menten rate constant for ATP (Kapp) of the Ca2+-myosin ATPase reaction were measured in type-identified fibres of the rat medial gastrocnemius (MG) muscle. The Vmax and the Kapp of the Ca2+-myosin ATPase reaction were lowest in type I fibres and highest (i.e., approx. two times greater) in type IIb fibres. The Kapp in type IIa fibres was similar to that in type I. However, the Vmax was 1.5 times greater in type IIa fibres, compared to type I fibres. Evidence is presented to suggest that the type IIb fibre population in the MG does not represent a single myosin isozyme. In addition, the broad range of Vmax and Kapp values indicates that there is marked heterogeneity in the myosin heavy chain and myosin light chain composition of myosin isozymes among individual fibres.  相似文献   

6.
The goal of this investigation was to develop an assay whereby we could measure changes in ATP, ADP, and phosphocreatine (PCr) during stimulation of the sarcoplasmic reticulum (SR) Ca2+ ATPase. After stopping the enzyme reaction, compounds were extracted by perchloric acid and separated by reversed-phase high-performance liquid chromatography (HPLC). Absorbance of ATP and ADP was monitored at 260 nm, and detection of PCr was done at 205 nm. Chromatograms show that peaks associated with each compound are clearly separated and easily detected. The SR Ca2+ ATPase assay was run for various time periods and using varying free [Ca2+]. The changes in ATP and ADP contents were linear with increasing time and varied as expected with increasing free [Ca2+]. The ATPase activities determined using changes in ATP and ADP were nearly identical to those determined using previously established assays. When PCr was added to the assay, we were able to confirm that the Ca2+ ATPase uses ATP that is synthesized locally from PCr via creatine kinase (CK). The results indicate that this is a valid and reliable method for examining SR Ca2+ ATPase activity and for investigating its interaction with CK.  相似文献   

7.
Summary The iliofibularis muscle ofXenopus laevis is reported to contain five types of fibres which have different force—velocity relationships. Ten fibres of each type were selected on the basis of succinate dehydrogenase activity, cross-sectional area and location in the muscle, in order to assess the validity of the fibre type classification.Maximum calcium-stimulated myofibrillar ATPase activity (V max) and apparent Michaelis constant (K m) for ATP were determined for these 50 fibres from serial sections. The values obtained varied according to the type of fibre. Type 1 had the highest and type 5 the lowest values forK m andV max.In a separate experiment, single freeze-dried fibres were used to determine the relationship between their ATP content and apparentK m for ATP. There was a tendency for high ATP concentrations in fibres with highK m values.When myofibrillar ATPase activity was related to the maximum velocity of shortening of the five fibre types, a significant correlation was found. It is concluded that calcium-stimulated myofibrillar ATPase histochemistry allows an estimate of the maximum shortening velocity of muscle fibres fromXenopus laevis.  相似文献   

8.
Sahlin K  Harris RC 《Amino acids》2011,40(5):1363-1367
The classical role of PCr is seen as a reservoir of high-energy phosphates defending cellular ATP levels under anaerobic conditions, high rates of energy transfer or rapid fluctuations in energy requirement. Although the high concentration of PCr in glycolytic fast-twitch fibers supports the role of PCr as a buffer of ATP, the primary importance of the creatine kinase (CK) reaction may in fact be to counteract large increases in ADP, which could otherwise inhibit cellular ATPase-mediated systems. A primary role for CK in the maintenance of ADP homeostasis may explain why, in many conditions, there is an inverse relationship between PCr and muscle contractility but not between ATP and muscle contractility. The high rate of ATP hydrolysis during muscle contraction combined with restricted diffusion of ADP suggests that ADP concentration increases transiently during the contraction phase (ADP spikes) and that these are synchronized with the contraction. The presence of CK, structurally bound in close vicinity to the sites of ATP utilization, will reduce the amplitude and duration of the ADP spikes through PCr-mediated phosphotransfer. When PCr is reduced, the efficiency of CK as an ATP buffer will be reduced and the changes in ADP will become more prominent. The presence of ADP spikes is supported by the finding that other processes known to be activated by ADP (i.e. AMP deamination and glycolysis) are stimulated during exercise but not during anoxia, despite the same low global energy state. Breakdown of PCr is driven by increases in ADP above that depicted by the CK equilibrium and the current method to calculate ADPfree from the CK reaction in a contracting muscle is therefore questionable.  相似文献   

9.
Physiological role of creatine (Cr) became first evident in the experiments of Belitzer and Tsybakova in 1939, who showed that oxygen consumption in a well-washed skeletal muscle homogenate increases strongly in the presence of creatine and with this results in phosphocreatine (PCr) production with PCr/O2 ratio of about 5–6. This was the beginning of quantitative analysis in bioenergetics. It was also observed in many physiological experiments that the contractile force changes in parallel with the alteration in the PCr content. On the other hand, it was shown that when heart function is governed by Frank–Starling law, work performance and oxygen consumption rate increase in parallel without any changes in PCr and ATP tissue contents (metabolic homeostasis). Studies of cellular mechanisms of all these important phenomena helped in shaping new approach to bioenergetics, Molecular System Bioenergetics, a part of Systems Biology. This approach takes into consideration intracellular interactions that lead to novel mechanisms of regulation of energy fluxes. In particular, interactions between mitochondria and cytoskeleton resulting in selective restriction of permeability of outer mitochondrial membrane anion channel (VDAC) for adenine nucleotides and thus their recycling in mitochondria coupled to effective synthesis of PCr by mitochondrial creatine kinase, MtCK. Therefore, Cr concentration and the PCr/Cr ratio became important kinetic parameters in the regulation of respiration and energy fluxes in muscle cells. Decrease in the intracellular contents of Cr and PCr results in a hypodynamic state of muscle and muscle pathology. Many experimental studies have revealed that PCr may play two important roles in the regulation of muscle energetics: first by maintaining local ATP pools via compartmentalized creatine kinase reactions, and secondly by stabilizing cellular membranes due to electrostatic interactions with phospholipids. The second mechanism decreases the production of lysophosphoglycerides in hypoxic heart, protects the cardiac cells sarcolemma against ischemic damage, decreases the frequency of arrhythmias and increases the post-ischemic recovery of contractile function. PCr is used as a pharmacological product Neoton in cardiac surgery as one of the components of cardioplegic solutions for protection of the heart against intraoperational injury and injected intravenously in acute myocardial ischemic conditions for improving the hemodynamic response and clinical conditions of patients with heart failure.  相似文献   

10.
Utilization of D- and L-lactate in the isolated intestinal smooth muscle of the guinea pig taenia caeci was examined by measuring contractile tension, oxygen consumption, and adenosine triphosphate (ATP) and creatine phosphate (PCr) concentrations. In the absence of glucose in the medium, muscle contraction induced by a high concentration of K+ was inhibited and the rate of oxygen consumption and the concentrations of ATP and PCr were decreased. Addition of glucose, L-lactate, and D,L-lactate, but not D-lactate, led to recovery of muscle contraction, rate of oxygen consumption, and ATP and PCr concentrations when the tissue had been incubated in the high K+, glucose-free solution. These results suggest that the isolated guinea pig taenia caeci selectively utilizes the L-isomer of lactate as a substrate for energy metabolism.  相似文献   

11.
Creatine kinase (CK) exists as a family of isoenzymes in excitable tissue. We studied isolated perfused hearts from mice lacking genes for either the main muscle isoform of CK (M-CK) or both M-CK and the main mitochondrial isoform (Mt-CK) to determine 1) the biological significance of CK isoenzyme shifts, 2) the necessity of maintaining a high CK reaction rate, and 3) the role of CK isoenzymes in establishing the thermodynamics of ATP hydrolysis. (31)P NMR was used to measure [ATP], [PCr], [P(i)], [ADP], pH, as well as the unidirectional reaction rate of PCr--> [gamma-P]ATP. Developmental changes in the main fetal isoform of CK (BB-CK) were unaffected by loss of other CK isoenzymes. In hearts lacking both M- and Mt-CK, the rate of ATP synthesis from PCr was only 9% of the rate of ATP synthesis from oxidative phosphorylation demonstrating a lack of any high energy phosphate shuttle. We also found that the intrinsic activities of the BB-CK and the MM-CK isoenzymes were equivalent. Finally, combined loss of M- and Mt-CK (but not loss of only M-CK) prevented the amount of free energy released from ATP hydrolysis from increasing when pyruvate was provided as a substrate for oxidative phosphorylation.  相似文献   

12.
Changes in the energy state of tissues in spontaneously hypertensive rats]   总被引:1,自引:0,他引:1  
The contents of adenine nucleotides (ATP, ADP, AMP), phosphocreatine (PCr) and creatine (Cr) in the heart, skeletal muscle, liver and spleen in spontaneously hypertensive (SHR) and normotensive (WKY) rats. The ATP/ADP ratio in cardiac tissue was lower in SHR compared with WKY, while myocardial contents of adenine nucleotides, PCr and Cr did not differ significantly between the groups. A lower ATP/ADP ratio in the skeletal muscle SHR of was accompanied by a reduction of PCr content comparing with these indices in WKY rats. The liver and spleen of SHR exhibited lower ATP contents and higher ADP and AMP levels compared with those ones in WKY rats, despite of the close values of adenine nucleotide pools (sigma AN = ATP + ADP + AMP). This redistribution of tissue adenine nucleotides was corresponded to lower energy charges (EC = (ATP + 0.5 ADP)/sigma AN) and ATP/ADP ratios in SHR group. The reduction of the energy state of tissues in SHR rats increased in the following rank: heart > skeletal muscle > liver > spleen, thus, reflecting progressive decrease of intensity of oxidative metabolism. The results suggest changes in the balance of rates of ATP formation and hydrolysis occur at the system level in primary hypertension. Probably, consequences of such rearrangement in energy metabolism are functional disturbances of plasma membrane and sacroplasmic reticulum well-documented in a number of experimental and clinical studies.  相似文献   

13.
The creatine kinase (CK) reaction is central to muscle energetics, buffering ATP levels during periods of intense activity via consumption of phosphocreatine (PCr). PCr is believed to serve as a spatial shuttle of high-energy phosphate between sites of energy production in the mitochondria and sites of energy utilization in the myofibrils via diffusion. Knowledge of the diffusion coefficient of PCr (D(PCr)) is thus critical for modeling and understanding energy transport in the myocyte, but D(PCr) has not been measured in humans. Using localized phosphorus magnetic resonance spectroscopy, we measured D(PCr) in the calf muscle of 11 adults as a function of direction and diffusion time. The results show that the diffusion of PCr is anisotropic, with significantly higher diffusion along the muscle fibers, and that the diffusion of PCr is restricted to a ~28-μm pathlength assuming a cylindrical model, with an unbounded diffusion coefficient of ~0.69 × 10(-3) mm(2)/s. This distance is comparable in size to the myofiber radius. On the basis of prior measures of CK reaction kinetics in human muscle, the expected diffusion distance of PCr during its half-life in the CK reaction is ~66 μm. This distance is much greater than the average distances between mitochondria and myofibrils. Thus these first measurements of PCr diffusion in human muscle in vivo support the view that PCr diffusion is not a factor limiting high-energy phosphate transport between the mitochondria and the myofibrils in healthy resting myocytes.  相似文献   

14.
Nuclear magnetic resonance (NMR) is a non-invasive technique which allows us to examine the biochemical, physiological and metabolic events occurring inside living tissue; such as vascular and other smooth muscles.It has been found that the smooth muscle metabolism is compartmented such that mitochondrial function fuels contraction and that much glycolytic ATP production is used for membrane pumps. Using NMR we have been able to observe the ATP and phosphocreatine (PCr) concentrations and estimate the ADP concentration, as well as flux through the creatine kinase (CK) system. It has also been found that the smooth muscle metabolism is able to maintain ATP concentration in the absence of mitochondrial function (cyanide inhibition). Therefore, the vessels are able to adapt to metabolic demands as necessary.NMR is versatile in the information it can provide because it has also yielded important contributions with regard to the intracellular pH and ionic status. For example, the intracellular free Mg2+ ([Mg2+]i) can be measured with NMR simultaneously with ATP concentrations and NMR has shown us that the [Mg2+]i is highly protected in the muscle (within confined range), but also responds to the environment around it.In this review we conclude that NMR measurements of smooth muscle research is a useful technique for assessing chronic and acute changes that occur in the tissue and during diseases.  相似文献   

15.
A quantitative histochemical method for assaying cytochrome c oxidase (COX) has been validated with two new findings concerning the optimal tissue thickness and a suitable substrate. The kinetics of a COX-catalysed reaction coupled to the oxidation of diaminobenzidine (DAB) were followed at 37 degrees C in single muscle fibres in unfixed sections of mouse gastrocnemius using a real-time image analysis system. The optimum composition of the substrate medium for the reaction was 0.1 mM reduced cytochrome c, 4 mM DAB, 2% dimethylsulphoxide, 2% polyvinyl alcohol and 0.1 mM HEPES buffer, final pH 7.5. The absorbances at 451 nm of the final reaction products, DAB polymer oxides, deposited in the intermyofibrillar mitochondria increased linearly as a function of incubation time for at least 80 s after the start of incubation. The initial velocities (v(i)) of the COX reaction calculated from the gradients of the linear regression best fits for times between 40 and 60 s were reproducible. The v(i) determined in single muscle fibres at a saturated concentration of cytochrome c (0.1 mM) were proportional to section thickness for thicknesses less than 3 microns, but they decreased exponentially when the thickness was greater than 4 microns. Thus, for the quantitative assay, unfixed sections 3 microns thick must be used. The Michaelis constants (Km) determined for commercial cytochrome c in the range of 20-26 microM for COX in three types of skeletal muscle fibres of mouse gastrocnemius were higher than the corresponding in situ Km (12-13 microM) for reduced cytochrome c. However, the Km values for commercial cytochrome c were in good agreement with the value previously determined with homogenates of rat hind limb muscle. Therefore, reduced cytochrome c is a more suitable substrate for the kinetic study and assay of COX in situ.  相似文献   

16.
Energy for muscle contractions is supplied by ATP generated from 1) the net hydrolysis of phosphocreatine (PCr) through the creatine kinase reaction, 2) oxidative phosphorylation, and 3) anaerobic glycolysis. The effect of old age on these pathways is unclear. The purpose of this study was to examine whether age may affect ATP synthesis rates from these pathways during maximal voluntary isometric contractions (MVIC). Phosphorus magnetic resonance spectroscopy was used to assess high-energy phosphate metabolite concentrations in skeletal muscle of eight young (20-35 yr) and eight older (65-80 yr) men. Oxidative capacity was assessed from PCr recovery after a 16-s MVIC. We determined the contribution of each pathway to total ATP synthesis during a 60-s MVIC. Oxidative capacity was similar across age groups. Similar rates of ATP synthesis from PCr hydrolysis and oxidative phosphorylation were observed in young and older men during the 60-s MVIC. Glycolytic flux was higher in young than older men during the 60-s contraction (P < 0.001). When expressed relative to the overall ATP synthesis rate, older men relied on oxidative phosphorylation more than young men (P = 0.014) and derived a smaller proportion of ATP from anaerobic glycolysis (P < 0.001). These data demonstrate that although oxidative capacity was unaltered with age, peak glycolytic flux and overall ATP production from anaerobic glycolysis were lower in older men during a high-intensity contraction. Whether this represents an age-related limitation in glycolytic metabolism or a preferential reliance on oxidative ATP production remains to be determined.  相似文献   

17.
We have investigated the effects of different sampling and processing methods on metabolite concentrations [glycogen (Gly), glucose (Glu), lactate (Lac), pyruvate (Pyr), ammonia (Amm), creatine phosphate (PCr), creatine (Cr), and adenosine triphosphate (ATP)] measured in white muscle of rainbow trout at rest and immediately after exhaustive exercise. When samples were taken from resting fish by rapid needle biopsy (without anaesthesia), direct freezing of the needles in liquid N2 yielded lower Lac and Glu levels than if the muscle cores were quickly blown out into liquid N2. However, killing of the fish by an overdose of MS-222 followed by freeze-clamping of excised muscle was superior to the biopsy method in preserving high levels of PCr and Gly (91 and 62% higher, respectively). In parallel, the MS-222 method also yielded lower levels of Amm (80%) and Lac (47%). Samples freeze-clamped by the MS-222 method were used to evaluate three methods of subsequent processing for enzymatic analysis of metabolites: classic glass homogenization (GH) in 8% perchloric acid (PCA) c. mortar and pestle (MP) pulverization or freeze-drying (FD) prior to PCA extraction. For all metabolites, GH and MP methods produced similar values. However, the FD technique yielded 20% higher PCr levels which represented over 80% phosphorylation of the total Cr pool at rest, the highest ever reported via enzymatic analysis. Glu was also higher by FD, bul Gly, Lac, and ATP were not affected. Indeed ATP was relatively stable throughout all sampling and processing procedures. MP, GH, MP&GH combination, and high speed motor driven grinding techniques all yielded similar Amm levels in resting muscle. However, tests demonstrated that even brief thawing of tissue greatly elevated Amm, while FD resulted in artificially low Amm values due to evaporative losses during lyophilization. Overall, muscle sampling by freeze-clamping on trout killed by MS-222 overdose, followed by FD prior to PCA extraction, appears to be the best combination for the measurement of all white muscle metabolites except Amm, for which MP or GH are preferable.  相似文献   

18.
Objective: Mitochondrial activity is altered in skeletal muscle of obese, insulin‐resistant or type 2 diabetic patients. We hypothesized that this situation was associated with profound adaptations in resting muscle energetics. For that purpose, we used in vivo 31P‐nuclear magnetic resonance (31P‐NMR) in male sedentary Wistar rats fed with obesogenic diets known to induce alterations in muscle mitochondrial activity. Methods and Procedures: Two experimental diets (high sucrose and high fat) were provided for 6 weeks at two levels of energy (standard, N and high, H) and compared to control diet. The rates of the adenosine triphosphate (ATP) exchange between phosphocreatine (PCr) and γ ‐ATP (ka) and β ‐adenosine diphosphate ( β ‐ADP) to β ‐ATP (kb) were evaluated using 31P‐NMR in resting gastrocnemius muscle. Muscle contents in phosphorylated compounds as well as creatine, were assessed using 31P‐NMR and biochemical assays, respectively. Results: ATP content increased by 6.7–8.5% in standard‐energy high‐sucrose (NSU), high‐energy high‐fat (HF) and high‐energy high‐sucrose (HSU) groups compared to control (P < 0.05), whereas PCr content decreased by 4.2–6.4% (P < 0.01). Consequently, PCr to ATP ratio decreased in NSU, HF, and HSU groups, compared to control (P < 0.01). Furthermore in high‐energy groups (HF and HSU) compared to control, creatine contents were decreased by 14–19% (P < 0.001), whereas ka and kb fluxes were increased by 89–133% (P < 0.001) and 243–277% (P < 0.01), respectively. Discussion: Our in vivo data showed adaptations of resting skeletal muscle energetics in response to high‐energy diets. Increased activity of enzymes catalyzing ATP production may reflect a compensatory mechanism to face impaired mitochondrial ATP synthesis in order to preserve intracellular energy homeostasis.  相似文献   

19.
The aim of this study was to measure the diffusion of ATP and phosphocreatine (PCr) in intact rat skeletal muscle, using (31)P-NMR. The acquisition of the diffusion-sensitized spectra was optimized in terms of the signal-to-noise ratio for ATP by using a frequency-selective stimulated echo sequence in combination with adiabatic radio-frequency pulses and surface coil signal excitation and reception. Diffusion restriction was studied by measuring the apparent diffusion coefficients of ATP and PCr as a function of the diffusion time. Orientation effects were eliminated by determining the trace of the diffusion tensor. The data were fitted to a cylindrical restriction model to estimate the unbounded diffusion coefficient and the radial dimensions of the restricting compartment. The unbounded diffusion coefficients of ATP and PCr were approximately 90% of their in vitro values at 37 degrees C. The diameters of the cylindrical restriction compartment were approximately 16 and approximately 22 microm for ATP and PCr, respectively. The diameters of rat skeletal muscle fibers are known to range from 60 to 80 microm. The modelling therefore suggests that the in vivo restriction of ATP and PCr diffusion is not imposed by the sarcolemma but by other, intracellular structures with an overall cylindrical orientation.  相似文献   

20.
This investigation examined the influence of the number of repetitions per set on power output and muscle metabolism during leg press exercise. Six trained men (age 34 ± 6 yr) randomly performed either 5 sets of 10 repetitions (10REP), or 10 sets of 5 repetitions (5REP) of bilateral leg press exercise, with the same initial load and rest intervals between sets. Muscle biopsies (vastus lateralis) were taken before the first set, and after the first and the final sets. Compared with 5REP, 10REP resulted in a markedly greater decrease (P<0.05) of the power output, muscle PCr and ATP content, and markedly higher (P<0.05) levels of muscle lactate and IMP. Significant correlations (P<0.01) were observed between changes in muscle PCr and muscle lactate (R(2) = 0.46), between changes in muscle PCr and IMP (R(2) = 0.44) as well as between changes in power output and changes in muscle ATP (R(2) = 0.59) and lactate (R(2) = 0.64) levels. Reducing the number of repetitions per set by 50% causes a lower disruption to the energy balance in the muscle. The correlations suggest that the changes in PCr and muscle lactate mainly occur simultaneously during exercise, whereas IMP only accumulates when PCr levels are low. The decrease in ATP stores may contribute to fatigue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号