首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite the importance of riboflavin as the direct precursor of the cofactors flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), the physiologically relevant catalyst dephosphorylating the riboflavin biosynthesis pathway intermediate 5‐amino‐6‐ribitylamino‐2,4(1H,3H) pyrimidinedione 5′‐phosphate (ARPP) has not been characterized from any organism. By using as the query sequence a previously identified plastidial FMN hydrolase AtcpFHy1 (At1g79790), belonging to the haloacid dehalogenase (HAD) superfamily, seven candidates for the missing ARPP phosphatase were found, cloned, recombinantly expressed, and purified. Activity screening showed that the enzymes encoded by AtcpFHy1, At4g11570, and At4g25840 catalyze dephosphorylation of ARPP. AtcpFHy1 was renamed AtcpFHy/PyrP1, At4g11570 and At4g25840 were named AtPyrP2 and AtGpp1/PyrP3, respectively. Subcellular localization in planta indicated that AtPyrP2 was localized in plastids and AtGpp1/PyrP3 in mitochondria. Biochemical characterization of AtcpFHy/PyrP1 and AtPyrP2 showed that they have similar Km values for the substrate ARPP, with AtcpFHy/PyrP1 having higher catalytic efficiency. Screening of 21 phosphorylated substrates showed that AtPyrP2 is specific for ARPP. Molecular weights of AtcpFHy/PyrP1 and AtPyrP2 were estimated at 46 and 72 kDa, suggesting dimers. pH and temperature optima for AtcpFHy/PyrP1 and AtPyrP2 were ~7.0–8.5 and 40–50°C. T‐DNA knockout of AtcpFHy/PyrP1 did not affect the flavin profile of the transgenic plants, whereas silencing of AtPyrP2 decreased accumulation of riboflavin, FMN, and FAD. Our results strongly support AtPyrP2 as the missing phosphatase on the riboflavin biosynthesis pathway in Arabidopsis thaliana. The identification of this enzyme closes a long‐standing gap in understanding of the riboflavin biosynthesis in plants.  相似文献   

2.
Phosphotransferase from carrot is shown to catalyze the phosphorylation of 6,7-dimethyl-8-ribityllumazine specifically at position 5′ of the ribityl side chain. The lumazine 5′-phosphate is neither a substrate nor an inhibitor of riboflavin synthase from Bacillus subtilis and Escherichia coli. It follows that the obligatory product of riboflavin synthase is riboflavin and not FMN.  相似文献   

3.
Using the bifunctional FAD synthetase from Corynebacterium ammoniagenes, which has the two sequential activities of flavokinase and FMN adenylyl-transferase in FAD biosynthesis, a method of production of the intermediate FMN without any accumulation of FAD was investigated. Various phosphate polymers having no adenylyl moiety were tested for their ability to phosphorylate riboflavin to FMN, using a crude enzyme from C. ammoniagenes/pKH46, which is an FAD-synthetase-gene-dosed strain. Only metaphosphate, other than ATP, could phosphorylate riboflavin to FMN, but FAD did not accumulate at all. The conditions for the conversion of riboflavin to FMN were optimized. The metaphosphate-dependent phosphorylation reaction required Mg2+ as the most effective divalent cation. The best concentrations were 10 mM for MgCl2 and 3mg/ml for metaphosphate. The riboflavin added to the reaction mixture was almost completely converted into FMN after 6 h incubation in the presence of high concentrations of the enzyme preparation.  相似文献   

4.
The facultative anaerobe Shewanella oneidensis can reduce a number of insoluble extracellular metals. Direct adsorption of cells to the metal surface is not necessary, and it has been shown that S. oneidensis releases low concentrations flavins, including riboflavin and flavin mononucleotide (FMN), into the surrounding medium to act as extracellular electron shuttles. However, the mechanism of flavin release by Shewanella remains unknown. We have conducted a transposon mutagenesis screen to identify mutants deficient in extracellular flavin accumulation. Mutations in ushA, encoding a predicted 5′‐nucleotidase, resulted in accumulation of flavin adenine dinucleotide (FAD) in culture supernatants, with a corresponding decrease in FMN and riboflavin. Cellular extracts of S. oneidensis convert FAD to FMN, whereas extracts of ushA mutants do not, and fractionation experiments show that UshA activity is periplasmic. We hypothesize that S. oneidensis secretes FAD into the periplasmic space, where it is hydrolysed by UshA to FMN and adenosine monophosphate (AMP). FMN diffuses through outer membrane porins where it accelerates extracellular electron transfer, and AMP is dephosphorylated by UshA and reassimilated by the cell. We predict that transport of FAD into the periplasm also satisfies the cofactor requirement of the unusual periplasmic fumarate reductase found in Shewanella.  相似文献   

5.
Riboflavin is a precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which work as cofactors of numerous enzymes. Understanding the supply system of these cofactors in bacteria, particularly those used for industrial production of value added chemicals, is important given the pivotal role the cofactors play in substrate metabolism. In this work, we examined the effect of disruption of riboflavin utilization genes on cell growth, cytoplasmic flavin levels, and expression of riboflavin transporter in Corynebacterium glutamicum. Disruption of the ribA gene that encodes bifunctional GTP cyclohydrolase II/3,4-dihydroxy-2-butanone 4-phosphate synthase in C. glutamicum suppressed growth in the absence of supplemental riboflavin. The growth was fully recovered upon supplementation with 1 μM riboflavin, albeit at reduced intracellular concentrations of FMN and FAD during the log phase. Concomitant disruption of the ribA and ribM gene that encodes a riboflavin transporter exacerbated supplemental riboflavin requirement from 1 μM to 50 μM. RibM expression in FMN-rich cells was about 100-fold lower than that in FMN-limited cells. Mutations in putative FMN-riboswitch present immediately upstream of the ribM gene abolished the FMN response. This 5′UTR sequence of ribM constitutes a functional FMN-riboswitch in C. glutamicum.  相似文献   

6.
The cloning of a bifunctional FAD synthetase gene, which shows flavokinase and FMN adenylyltransferase activities, from Corynebacterium ammoniagenes was tried by hybridization with synthetic DNAs corresponding to the N-terminal amino acid sequence. The cloned PstI-digested 4.4 × 103-base (4.4-kb) fragment could not express the FAD synthetase activity in E. coli, but could increase the two activities by the same factor of about 20 in C. amminoagenes. The FAD-synthetase-gene-amplified C. amminoagenes cells were applied to the production of FAD from FMN or riboflavin. The productivity of FAD from FMN was increased four to five times compared with the parent strain, and reached a 90% molar yield. The productivity of FAD from riboflavin was increased about eight times, with a 50% molar yield. The addition of Zn2+ to the reaction mixtures for the conversion from riboflavin to FAD brought about the specific inhibition of adenylyltransferase activity and resulted in the accumulation of FMN.  相似文献   

7.
Phosphoric acid esters of riboflavin can be easily separated by reverse-phase high-performance liquid chromatography using eluants of 0.1 M ammonium formate in aqueous methanol. Commercial FMN preparations contained seven different flavin phosphates; the content of riboflavin 5'-phosphate was 70-75% and is in agreement with previous studies. Millimole amounts of crude FMN can be processed by preparative HPLC. The method permits the preparation of greater than 99%-pure 5'-FMN. The following compounds were isolated in pure form and their structures determined: riboflavin 4'-phosphate, riboflavin 3'-phosphate, riboflavin 4',5'-diphosphate; riboflavin 3',4'-diphosphate, and riboflavin 3',5'-diphosphate. The latter compound binds tightly to apoflavodoxin from Megasphaera elsdenii (KD = 9.7 X 10(-9) M). The bound flavin has high catalytic activity, thus representing a novel type of FMN analog. A wide variety of structural analogs of FMN can be obtained in pure form by preparative HPLC.  相似文献   

8.
Analogs of riboflavin that were altered at positions N(3), 8α, and N(10) of the 7,8-dimethylisoalloxazine ring were immobilized by covalent attachment to aminoalkylated agarose and polyacrylamide beads. These materials were used for affinity chromatographic purification of the riboflavin-carrier protein from egg white, egg yolk, and blood from laying hens, of flavokinase from rat liver, and of partially purified flavodoxin from Azotobacter vinelandii (FMN). The apo-carrier protein, which tightly complexes riboflavin (Kd ≈ 2 nm), was bound by the N(3)-, 8α-, and N(10)-flavinyl beads and was selectively displaced in moderate to high yield by 10 μm riboflavin or 1 m NaCl at pH 3.5. Flavokinase, which complexes less tightly with riboflavin (Km ≈ 12 μm), was bound by the 8α- and N(10)-flavinyl beads. Binding to the latter was sufficiently tight that the addition of riboflavin was needed to displace flavokinase from the beads. The A. vinelandii flavodoxin, which normally complexes riboflavin 5′-phosphate (K3 ≈ 5 nm) but less avidly complexes riboflavin (Kd ≈ 0.6 μm), was bound by the N(10)-flavinyl beads and eluted in low yield upon addition of FMN; most of the apoprotein denatured on the column despite the inclusion of thiol-protecting reagents. These flavin affinity materials may be generally useful for isolating a variety of other proteins that bind riboflavin.  相似文献   

9.
A method is described for determining riboflavin 5′-phosphate (FMN) and flavin adenine dinucleotide (FAD) in mixtures by fluorimetric titration with the FMN-specific apoprotein of flavodoxin from Peptostreptococcus elsdenii. Accurate determinations can be carried out in the presence of a variety of compounds that decrease the fluorescence yield of FMN; the method may therefore be especially useful in the analysis of crude protein-free extracts of biological materials.  相似文献   

10.
Riboflavin Homeostasis in the Central Nervous System   总被引:4,自引:2,他引:2  
Abstract: The mechanisms by which riboflavin, which is not synthesized in mammals, enters and leaves brain, CSF, and choroid plexus were investigated by injecting [14C]riboflavin intravenously or intraventricularly. Tracer amounts of [14C]riboflavin with or without FMN were infused intravenously at a constant rate into normal, starved, or probenecid-pretreated rabbits. At 3 h, [14C]riboflavin readily entered choroid plexus and brain, and, to a much lesser extent, CSF. Over 85% of the [14C]riboflavin in brain and choroid plexus was present as [14C]FMN and [14C]FAD. The addition of 0.2 mmol/kg FMN to the infusate markedly depressed the relative entry of [14C]riboflavin into brain, choroid plexus, and, less so, CSF, whereas starvation increased the relative entry of [14C]riboflavin into brain and choroid plexus. After intraventricular injection (2 h), most of the [14C]riboflavin was extremely rapidly cleared from CSF into blood. Some of the [14C]riboflavin entered brain, where over 85% of the 14C was present as [14C]FMN plus [14C]FAD. The addition of 1.23μmol FAD (which was rapidly hydrolyzed to riboflavin) to the injectate decreased the clearance of [14C]riboflavin from CSF and the phosphorylation of [14C]riboflavin in brain. Probenecid in the injectate also decreased the clearance of [14C]riboflavin from CSF. These results show that the control of entry and exit of riboflavin is the mechanism, at least in part, by which total riboflavin levels in brain cells and CSF are regulated. Penetration of riboflavin through the blood-brain barrier, saturable efflux of riboflavin from CSF, and saturable entry of riboflavin into brain cells are three distinct parts of the homeostatic system for total riboflavin in the central nervous system.  相似文献   

11.
This work shows that the ribC wild-type gene product has both flavokinase and flavin adenine dinucleotide synthetase (FAD-synthetase) activities. RibC plays an essential role in the flavin metabolism of Bacillus subtilis, as growth of a ribC deletion mutant strain was dependent on exogenous supply of FMN and the presence of a heterologous FAD-synthetase gene in its chromosome. Upon cultivation with growth-limiting amounts of FMN, this ribC deletion mutant strain overproduced riboflavin, while with elevated amounts of FMN in the culture medium, no riboflavin overproduction was observed. In a B. subtilis ribC820 mutant strain, the corresponding ribC820 gene product has reduced flavokinase/FAD-synthetase activity. In this strain, riboflavin overproduction was also repressed by exogenous FMN but not by riboflavin. Thus, flavin nucleotides, but not riboflavin, have an effector function for regulation of riboflavin biosynthesis in B. subtilis, and RibC seemingly is not directly involved in the riboflavin regulatory system. The mutation ribC820 leads to deregulation of riboflavin biosynthesis in B. subtilis, most likely by preventing the accumulation of the effector molecule FMN or FAD.  相似文献   

12.
We report on an unrestrained molecular dynamics simulation of the flavin mononucleotide (FMN)–RNA aptamer. The simulated average structure maintains both cross‐strand and intermolecular FMN–RNA nuclear Overhauser effects from the nmr experiments and has all qualitative features of the nmr structure including the G10–U12–A25 base triple and the A13–G24, A8–G28, and G9–G27 mismatches. However, the relative orientation of the hairpin loop to the remaining part of the molecule differs from the nmr structure. The simulation predicts that the flexible phosphoglycerol part of FMN moves toward G27 and forms hydrogen bonds. There are structurally long‐lived water molecules in the FMN binding pocket forming hydrogen bonds within FMN and between FMN and RNA. In addition, long‐lived water is found bridging primarily RNA backbone atoms. A general feature of the environment of long‐lived “structural” water is at least two and in most cases three or four potential acceptor atoms. The 2′‐OH group of RNA usually acts as an acceptor in interactions with the solvent. There are almost no intrastrand O2′H(n)⋮O4′(n + 1) hydrogen bonds within the RNA backbone. In the standard case the preferred orientation of the 2′‐OH hydrogen atoms is approximately toward O3′ of the same nucleotide. However, a relatively large number of conformations with the backbone torsional angle γ in the trans orientation is found. A survey of all experimental RNA x‐ray structures shows that this backbone conformation occurs but is less frequent than found in the simulation. Experimental nmr RNA aptamer structures have a higher fraction of this conformation as compared to the x‐ray structures. The backbone conformation of nucleotide n + 1 with the torsional angle γ in the trans orientation leads to a relatively short distance between 2′‐OH(n) and O5′(n + 1), enabling hydrogen‐bond formation. In this case the preferred orientation of the 2′‐OH hydrogen atom is approximately toward O5′(n + 1). We find two relatively short and dynamically stable types of backbone–backbone next‐neighbor contacts, namely C2′(H)(n)⋮O4′(n + 1) and C5′(H)(n + 1)⋮O2′(n). These interactions may affect both backbone rigidity and thermodynamic stability of RNA helical structures. © 1999 John Wiley & Sons, Inc. Biopoly 50: 287–302, 1999  相似文献   

13.
Nitric oxide (NO) and reactive oxygen species (ROS) play key roles in plant immunity. However, the regulatory mechanisms of the production of these radicals are not fully understood. Hypersensitive response (HR) cell death requires the simultaneous and balanced production of NO and ROS. In this study we indentified NbRibA encoding a bifunctional enzyme, guanosine triphosphate cyclohydrolase II/3,4‐dihydroxy‐2‐butanone‐4‐phosphate synthase, which participates in the biosynthesis of flavin, by screening genes related to mitogen‐activated protein kinase‐mediated cell death, using virus‐induced gene silencing. Levels of endogenous riboflavin and its derivatives, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which are important prosthetic groups for several enzymes participating in redox reactions, decreased in NbRibA‐silenced Nicotiana benthamiana. Silencing NbRibA compromised not only HR cell death, but also the NO and ROS production induced by INF1 elicitin and a constitutively active form of NbMEK2 (NbMEK2DD), and also induced high susceptibility to oomycete Phytophthora infestans and ascomycete Colletotrichum orbiculare. Compromised radical production and HR cell death induced by INF1 in NbRibA‐silenced leaves were rescued by adding riboflavin, FMN or FAD. These results indicate that flavin biosynthesis participates in regulating NO and ROS production, and HR cell death.  相似文献   

14.
Pyridoxamine (pyridoxine) 5′-phosphate oxidase purified from baker’s yeast was found to have a molecular weight of ca, 55,000 daltons based on polyacrylamide gel electrophoresis. The size of the enzyme subunit was analyzed by gel electrophoresis in the presence of sodium dodecylsulfate. This showed that the enzyme was composed of two nonidentical subunits with a molecular weight of 27,000 and 25,000 daltons. Fluorescence titration of the apoenzyme with FMN suggested that the holoenzyme contained one mol of FMN per mol of the enzyme. The Km value of FMN for apoenzyme was calculated to be ca. 16 nm on both activities of pyridoxamine 5′-phosphate oxidase and pyridoxine 5′-phosphate oxidase.  相似文献   

15.
Aptamers are nucleic acids developed by in vitro evolution techniques that bind to specific ligands with high affinity and selectivity. Despite such high affinity and selectivity, however, in vitro evolution does not necessarily reveal the minimum structure of the nucleic acid required for selective ligand binding. Here, we show that a 35mer RNA aptamer for the cofactor flavin mononucleotide (FMN) identified by in vitro evolution can be computationally evolved to a mere 14mer structure containing the original binding pocket and eight scaffolding nucleotides while maintaining its ability to bind in vitro selectively to FMN. Using experimental and computational methodologies, we found that the 14mer binds with higher affinity to FMN (KD ~ 4 µM) than to flavin adenine dinucleotide (KD ~ 12 µM) or to riboflavin (KD ~ 13 µM),despite the negative charge of FMN. Different hydrogen-bond strengths resulting from differing ring-system electron densities associated with the aliphatic-chain charges appear to contribute to the selectivity observed for the binding of the 14mer to FMN and riboflavin. Our results suggest that high affinity and selectivity in ligand binding is not restricted to large RNAs, but can also be a property of extraordinarily short RNAs.  相似文献   

16.
Recombinant strains of the flavinogenic yeast Candida famata able to overproduce flavin mononucleotide (FMN) that contain FMN1 gene encoding riboflavin (RF) kinase driven by the strong constitutive promoter TEF1 (translation elongation factor 1α) were constructed. Transformation of these strains with the additional plasmid containing the FMN1 gene under the TEF1 promoter resulted in the 200-fold increase in the riboflavin kinase activity and 100-fold increase in FMN production as compared to the wild-type strain (last feature was found only in iron-deficient medium).Overexpression of the FMN1 gene in the mutant that has deregulated riboflavin biosynthesis pathway and high level of riboflavin production in iron-sufficient medium led to the 30-fold increase in the riboflavin kinase activity and 400-fold increase in FMN production of the resulted transformants. The obtained C. famata recombinant strains can be used for the further construction of improved FMN overproducers.  相似文献   

17.
Riboflavin (vitamin B2) is an indispensable nutrient for humans and animals, since it is the precursor of the essential coenzymes flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), involved in variety of metabolic reactions. Riboflavin is produced on commercial scale and is used for feed and food fortification purposes, and in medicine. Until recently, the mutant strains of the flavinogenic yeast Candida famata were used in industry for riboflavin production. Guanosine triphosphate is the immediate precursor of riboflavin synthesis. Therefore, the activation of metabolic flux toward purine nucleotide biosynthesis is a promising approach to improve riboflavin production. The phosphoribosyl pyrophosphate synthetase and phosphoribosyl pyrophosphate amidotransferase are the rate limiting enzymes in purine biosynthesis. Corresponding genes PRS3 and ADE4 from yeast Debaryomyces hansenii are modified to avoid feedback inhibition and cooverexpressed on the background of a previously constructed riboflavin overproducing strain of C. famata. Constructed strain accumulates twofold more riboflavin when compared to the parental strain.  相似文献   

18.
19.
The Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) is the prototype of a novel class of flavoproteins carrying a riboflavin phosphate bound to serine or threonine by a phosphodiester bond to the ribityl side chain. This membrane-bound, respiratory complex also contains one non-covalently bound FAD, one non-covalently bound riboflavin, ubiquinone-8 and a [2Fe–2S] cluster. Here, we report the quantitative analysis of the full set of flavin cofactors in the Na+-NQR and characterize the mode of linkage of the riboflavin phosphate to the membrane-bound NqrB and NqrC subunits. Release of the flavin by β-elimination and analysis of the cofactor demonstrates that the phosphate group is attached at the 5'-position of the ribityl as in authentic FMN and that the Na+-NQR contains approximately 1.7 mol covalently bound FMN per mol non-covalently bound FAD. Therefore, each of the single NqrB and NqrC subunits in the Na+-NQR carries a single FMN. Elimination of the phosphodiester bond yields a dehydro-2-aminobutyrate residue, which is modified with β-mercaptoethanol by Michael addition. Proteolytic digestion followed by mass determination of peptide fragments reveals exclusive modification of threonine residues, which carry FMN in the native enzyme. The described reactions allow quantification and localization of the covalently attached FMNs in the Na+-NQR and in related proteins belonging to the Rhodobacter nitrogen fixation (RNF) family of enzymes. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

20.
The bifunctional flavin adenine dinucleotide synthetase (FADS) synthesizes the flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) co-factors essential for the function of flavoproteins. The Staphylococcus aureus FADS (SaFADS) produces FMN from riboflavin (RF) by ATP:riboflavin kinase (RFK) activity at its C-terminal domain. The N-terminal domain converts FMN to FAD under a reducing environment by FMN:ATP adenylyltransferase (FMNAT) activity which is reversible (FAD pyrophosphorylase activity). Herein, we investigated the role of F26 residue of the 24-GFFD-28 motif of SaFADS FMNAT domain, mostly conserved in the reducing agent-dependent FADSs. The steady-state kinetics studies showed changes in the KmATP values for mutants, indicating that the F26 residue is crucial for the FMNAT activity. Further, the FMNAT activity of the F26S mutant was observed to be higher than that of the wild-type SaFADS and its other variants at lower reducing agent concentration. In addition, the FADpp activity was inhibited by an excess of FAD substrate, which was more potent in the mutants. The altered orientation of the F26 side-chain observed in the molecular dynamics analysis suggested its plausible involvement in stabilizing FMN and ATP substrates in their respective binding pockets. Also, the SaFADS ternary complex formed with reduced FMN exhibited significant structural changes in the β4n-β5n and L3n regions compared to the oxidised FMN bound and apo forms of SaFADS. Overall, our data suggests the functional role of F26 residue in the FMNAT domain of SaFADS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号