首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Despite the known importance of long-chained polyunsaturated fatty acids (LC-PUFA) during development, very little is known about their utilization and biosynthesis during embryogenesis. Combining the advantages of the existence of a complete range of enzymes required for LC-PUFA biosynthesis and the well established developmental biology tools in zebrafish, we examined the expression patterns of three LC-PUFA biosynthesis genes, Elovl2-like elongase (elovl2), Elovl5-like elongase (elovl5) and fatty acyl desaturase (fad) in different zebrafish developmental stages. The presence of all three genes in the brain as early as 24 hours post fertilization (hpf) implies LC-PUFA synthesis activity in the embryonic brain. This expression eventually subsides from 72 hpf onwards, coinciding with the initiation of elovl2 and fad expression in the liver and intestine, 2 organs known to be involved in adult fish LC-PUFA biosynthesis. Collectively, these patterns strongly suggest the necessity for localized production of LC-PUFA in the brain during in early stage embryos prior to the maturation of the liver and intestine. Interestingly, we also showed a specific expression of elovl5 in the proximal convoluted tubule (PCT) of the zebrafish pronephros, suggesting a possible new role for LC-PUFA in kidney development and function.  相似文献   

3.
TIA-1 and the related protein TIAR promote DNA fragmentation in digitonin-permeabilized thymocytes. These proteins contain RNA Recognition Motifs (RRMs) and bind uridine-rich sequences. These observations suggested that TIA-1/TIAR are pro-apoptotic factors that influence some aspect of RNA metabolism. Here we review recent data implicating TIA-1 as a regulator of translation of Tumor Necrosis Factor- mRNA and as regulator of alternative splicing of a variety of pre-mRNAs, including those of the Fibroblast Growth Factor Receptor 2 and the Fas receptor. We also discuss how some of these activities could be integrated in the control of programmed of cell death.  相似文献   

4.
Many biological processes cannot be fully understood without detailed knowledge of RNA metabolism. The continuous breakdown and resynthesis of prokaryotic mRNA permit rapid production of new kinds of proteins. In this way, mRNA levels can regulate protein synthesis and cellular growth. Analysing mRNA degradation in prokaryotes has been particularly difficult because most mRNA undergo rapid exponential decay. Prokaryotic mRNAs differ in their susceptibility to degradation by endonucleases and exonucleases, possibly because of variation in their sequencing and structure. In spite of numerous studies, details of mRNA degradation are still largely unknown. This review highlights those aspects of mRNA metabolism which seem most influential in the regulation of gene expression.  相似文献   

5.
Summary We report a preliminary analysis of structural and regulatory evolution of the A and B chorion gene families in two wild silkmoths,Antheraea pernyi andAntheraea polyphemus. Homospecific and heterospecific dot hybridizations were performed between previously characterizedA. polyphemus complementary DNA clones and total or stage-specific follicular mRNAs from the two species. The hybridization patterns indicated substantial interspecies changes in the abundance of corresponding mRNA sequences (heteroposic evolution) without substantial changes in their developmental specificities (heterochronic evolution). In addition, the proteins encoded in the two species by corresponding mRNAs were determined by hybrid-selected translation followed by electrophoretic analysis. The results suggested that the proteins evolve in size, presumably through internal deletions and duplications.  相似文献   

6.
7.
We cloned cDNAs for Xenopus aldolases A, B and C. These three aldolase genes are localized on different chromosomes as a single copy gene. In the adult, the aldolase A gene is expressed extensively in muscle tissues, whereas the aldolase B gene is expressed strongly in kidney, liver, stomach and intestine, while the aldolase C gene is expressed in brain, heart and ovary. In oocytes aldolase A and C mRNAs, but not aldolase B mRNA, are extensively transcribed. Thus, aldolase A and C mRNAs, but not B mRNA, occur abundantly in eggs as maternal mRNAs, and strong expression of aldolase B mRNA is seen only after the late neurula stage. We conclude that aldolase A and C mRNAs are major aldolase mRNAs in early stages of Xenopus embryogenesis which proceeds utilizing yolk as the only energy source, aldolase B mRNA, on the other hand, is expressed only later in development in tissues which are required for dietary fructose metabolism. We also isolated the Xenopus aldolase C genomic gene (ca. 12 kb) and found that i  相似文献   

8.
9.
Lau WL  Scholnick SB 《Genomics》2003,82(3):412-415
CSMD1 is a putative suppressor of squamous cell carcinomas mapping to human chromosomal region 8p23. We have cloned two new members of this gene family, CSMD2 and CSMD3. The three CSMD proteins have very similar structures, each consisting of 14 CUB domains separated from one another by a sushi domain, an additional uninterrupted array of sushi domains, a single transmembrane domain, and a short cytoplasmic tail. CUB and sushi domains are thought to be sites of protein-protein or protein-ligand interactions, suggesting that CSMD proteins are either transmembrane receptors or adhesion proteins. The cytoplasmic tail sequences are highly conserved within the vertebrate lineage. CSMD2 maps to a chromosomal region that may contain a suppressor of oligodendrogliomas, yet its expression is elevated in some head and neck cancer cell lines. Functional overlap between the CSMD1 and the CSMD2 proteins may modify the phenotype resulting from the loss of either protein in tumors.  相似文献   

10.
Jeong YM  Mun JH  Lee I  Woo JC  Hong CB  Kim SG 《Plant physiology》2006,140(1):196-209
Profilin is a small actin-binding protein that regulates cellular dynamics of the actin cytoskeleton. In Arabidopsis (Arabidopsis thaliana), five profilins were identified. The vegetative class profilins, PRF1, PRF2, and PRF3, are expressed in vegetative organs. The reproductive class profilins, PRF4 and PRF5, are mainly expressed in pollen. In this study, we examined the role of the first intron in the expression of the Arabidopsis profilin gene family using transgenic plants and a transient expression system. In transgenic plants, we examined PRF2 and PRF5, which represent vegetative and reproductive profilins. The expression of the PRF2 promoter fused with the beta-glucuronidase (GUS) gene was observed in the vascular bundles, but transgenic plants carrying the PRF2 promoter-GUS with its first intron showed constitutive expression throughout the vegetative tissues. However, the first intron of PRF5 had little effect on the reporter gene expression pattern. Transgenic plants containing PRF5 promoter-GUS fusion with or without its first intron showed reproductive tissue-specific expression. To further investigate the different roles of the first two introns on gene expression, the first introns were exchanged between PRF2 and PRF5. The first intron of PRF5 had no apparent effect on the expression pattern of the PRF2 promoter. But, unlike the intron of PRF5, the first intron of PRF2 greatly affected the reproductive tissue-specific expression of the PRF5 promoter, confirming a different role for these introns. The results of a transient expression assay indicated that the first intron of PRF1 and PRF2 enhances gene expression, whereas PRF4 and PRF5 do not. These results suggest that the first introns of profilin genes are functionally distinctive and the first introns are required for the strong and constitutive gene expression of PRF1 and PRF2 in vegetative tissues.  相似文献   

11.
GABAergic neurons in the ventral mesodiencephalic region are highly important for the function of dopaminergic pathways that regulate multiple aspects of behavior. However, development of these neurons is poorly understood. We recently showed that molecular regulation of differentiation of the GABAergic neurons associated with the dopaminergic nuclei in the ventral midbrain (VTA and SNpr) is distinct from the rest of midbrain, but the reason for this difference remained elusive. Here, we have analyzed the developmental origin of the VTA and SNpr GABAergic neurons by genetic fate mapping. We demonstrate that the majority of these GABAergic neurons originate outside the midbrain, from rhombomere 1, and move into the ventral midbrain only as postmitotic neuronal precursors. We further show that Gata2, Gata3 and Tal1 define a subpopulation of GABAergic precursors in ventral rhombomere 1. A failure in GABAergic neuron differentiation in this region correlates with loss of VTA and SNpr GABAergic neurons in Tal1 mutant mice. In contrast to midbrain, GABAergic neurons of the anterior SNpr in the diencephalon are not derived from the rhombomere 1. These results suggest unique migratory pathways for the precursors of important GABAergic neuron subpopulations, and provide the basis for understanding diversity within midbrain GABAergic neurons.  相似文献   

12.
Expression of two kallikrein gene family members in the rat prostate   总被引:2,自引:0,他引:2  
  相似文献   

13.
14.
Mitogen-activated protein (MAP) kinase kinase (MAPKK) is a recently characterized activator of MAP kinase (MAPK), and is considered to be regulated by a protooncogene product c-Raf-1. It is, however, unclear whether the signals originating from c-Raf-1 utilize this phosphorylation cascade to lead to oncogenesis. To clarify this point, we isolated rat MAPKK cDNAs, and identified two distinct cDNAs encoding MAPKK and a highly related kinase, both with molecular weights of 5 kDa (MEK1 and MEK2). Genomic Southern blot analyses suggested that MAPKK. may form a large gene family.  相似文献   

15.
Evidence for an alternative nitrogen fixation system which is expressed under conditions of molybdenum deficiency has been reported in Azotobacter vinelandii (Bishop, P.E., Jarlenski, D.M.L. and Hetherington, D.R., Proc. Natl. Acad. Sci. U.S.A. (1980) 77, 7342–7346). In the present report we describe the existence of activity for a dinitrogenase reductase-like enzyme (alternative reductase) in Mo-deficient cell-free extracts of Nif? mutant strains of A. vinelandii which lack either conventional dinitrogenase reductase (strains UW1 and UW3) or contain a defective enzyme (strain UW91) under conditions of Mo-sufficiency. Nitrogenase activities were determined by the acetylene reduction method in a complementation assay where extracts of strain UW91 served as a source of dinitrogenase and extracts of strains UW1, UW3 or UW91 served as a source of alternative reductase. Strains that lack dinitrogenase reductase activity in the presence of Mo, were shown to have alternative reductase activity under Mo-deficient conditions. Two-dimensional gel electrophoretic analysis showed these extracts to contain a protein of similar mobility as the conventional dinitrogenase reductase. Molybdenum and tungsten repressed the formation of the alternative reductase whereas vanadium mimicked Mo deprivation. In conclusion, the results with the Nif? strains provide evidence for the presence of two reductase activities, one of which is expressed in the presence of Mo (dinitrogenase reductase) and the other in the absence of Mo (alternative reductase).  相似文献   

16.
Phenotypic variation is the raw material of adaptive Darwinian evolution. The phenotypic variation found in organismal development is biased towards certain phenotypes, but the molecular mechanisms behind such biases are still poorly understood. Gene regulatory networks have been proposed as one cause of constrained phenotypic variation. However, most pertinent evidence is theoretical rather than experimental. Here, we study evolutionary biases in two synthetic gene regulatory circuits expressed in Escherichia coli that produce a gene expression stripe—a pivotal pattern in embryonic development. The two parental circuits produce the same phenotype, but create it through different regulatory mechanisms. We show that mutations cause distinct novel phenotypes in the two networks and use a combination of experimental measurements, mathematical modelling and DNA sequencing to understand why mutations bring forth only some but not other novel gene expression phenotypes. Our results reveal that the regulatory mechanisms of networks restrict the possible phenotypic variation upon mutation. Consequently, seemingly equivalent networks can indeed be distinct in how they constrain the outcome of further evolution.  相似文献   

17.
The expression of two kallikrein gene family members in the rat kidney   总被引:1,自引:0,他引:1  
The mRNAs for two kallikrein gene family members expressed in the rat kidney have been characterized. One mRNA (PS) has previously been found in the pancreas and submaxillary gland and encodes true kallikrein. The second mRNA (K1) encodes a novel kallikrein-like enzyme expressed in the kidney and submaxillary gland that retains many of the key amino acid residues for the characteristic enzymatic cleavage specificity of kallikrein. Two oligonucleotide hybridization probes specific for the K1 mRNA demonstrate that the K1 mRNA is expressed in the kidney and submaxillary gland, but in none of the other eight tissues known to express one or more members of the rat kallikrein gene family. The K1 mRNA is the dominant kallikrein-related mRNA of the kidney, expressed at roughly 10 times the level of the true kallikrein (PS) mRNA. In the submaxillary gland the K1 mRNA is expressed at roughly one-fourth the level of true kallikrein mRNA.  相似文献   

18.
19.
A hypothesis concerning two distinct classes of amino acid residues in some regulatory binding sites is proposed. The affinity residues are those that are unable to transduce the ligand information signal but are responsible for overcoming the barrier for the attachment of a ligand to its binding site while the effector residues transfer the binding signal to the other functional part of the protein, which then undergoes a non-equilibrium energetic cycle induced by interaction with the ligand.As an example, the purine nucleotide inhibition of H+ transport through the uncoupling protein of brown adipose tissue mitochondria is discussed; there is a concentration range in which the nucleotide is bound but does not inhibit H+ transport. This is interpreted in terms of inaccessibility of the effector residues inducing H+ transport inhibition below a certain threshold concentration.  相似文献   

20.
MicroRNAs (miRNAs) are a class of endogenous small RNAs that play important regulatory roles in both animals and plants, miRNA genes have been intensively studied in animals, but not in plants. In this study, we adopted a homology search approach to identify homologs of previously validated plant miRNAs in Arabidopsis thaliana and Oryza sativa. We identified 20 potential miRNA genes in Arabidopsis and 40 in O. sativa, providing a relatively complete enumeration of family members for these miRNAs in plants. In addition, a greater number of Arabidopsis miRNAs (MIR168, MIR159 and MIR172) were found to be conserved in rice. With the novel homologs, most of the miRNAs have closely related fellow miRNAs and the number of paralogs varies in the different miRNA families. Moreover, a probable functional segment highly conserved on the elongated stem of pre-miRNA fold-backs of MIR319 and MIR159 family was identified. These results support a model of variegated miRNA regulation in plants, in which miRNAs with different functional elements on their pre-miRNA fold-backs can differ in their function or regulation, and closely related miRNAs can be diverse in their specificity or competence to downregulate target genes. It appears that the sophisticated regulation of miRNAs can achieve complex biological effects through qualitative and quantitative modulation of gene expression profiles in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号