首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The comparative investigation of biopolymer hydration by physicochemical techniques, particularly by small-angle X-ray scattering, has shown that the values obtained differ over a wide range, depending on the nature of the polymer and the environmental conditions. In the case of simple proteins, a large number of available data allow the derivation of a realistic average value for the hydration (0.35 g of water per gram of protein). As long as the average properties of proteins are considered, the use of such a default value is sufficient. Modeling approaches may be used advantageously, in order to differentiate between different assumptions and hydration contributions, and to correctly predict hydrodynamic properties of biopolymers on the basis of their three-dimensional structure. Problems of major concern are the positioning and the properties of the water molecules on the biopolymer surface. In this context, different approaches for calculating the molecular volume and surface of biopolymers have been applied, in addition to the development of appropriate hydration algorithms.  相似文献   

2.
Physical characterization of lumazine proteins from Photobacterium   总被引:1,自引:0,他引:1  
D J O'Kane  J Lee 《Biochemistry》1985,24(6):1484-1488
The physicochemical properties of Photobacterium lumazine proteins have been investigated. The molecular weights obtained by several physical techniques are in good agreement, and the averages are 2% and 8% higher than the minimum molecular weights from amino acid and ligand content. The average molecular weights, sedimentation coefficients, and molecular radii are respectively the following: Photobacterium leiognathi lumazine protein, 21 200 +/- 300, 2.18 S, and 22.9 A; Photobacterium phosphoreum lumazine protein, 21 300 +/- 500, 2.16 S, and 23.0 A. The hydrations of the lumazine proteins, estimated in several ways, indicate less hydration for P. leiognathi than for P. phosphoreum. The frictional ratios corrected for hydration give axial ratios less than 1.3 for both lumazine proteins. These values agree with those obtained by a combination of rotational and translational frictional parameters and elimination of the common hydrated volume terms. There is insufficient area on the exterior surface to accommodate hydration when the lumzine proteins are considered as smooth-surfaced ellipsoids. The required surface area can be accommodated however by surface roughness with a minimum of 30% internal water.  相似文献   

3.
G Cevc 《Biochemistry》1987,26(20):6305-6310
The principle of regulation of various membrane properties by the hydrocarbon membrane interior is now well understood. The mechanism by which the interfacial membrane region including aqueous solution affects the state of the lipid bilayer matrix, however, is as yet unclear, despite its great biological and physiological significance. Data and analysis presented in this paper show that apart from the lipid chain type, length, and degree of unsaturation the main factors determining the characteristics of lipid membranes are surface polarity and interfacial hydration. These incorporate the effects of head group dipole and multipole moments as well as the head group ability for hydrogen bonding and can account for most of the changes in the physicochemical membrane state caused by the lipid head group structure, bulk pH value, salt content, solute adsorption, etc. The effects of membrane potential are much less, only 10-30% of the former. Variations in hydration thus not only govern the short- and medium-range intermolecular and intermembrane interactions but also provide a fast and energetically inexpensive regulatory mechanism for lipid membranes to adapt their characteristics, at least locally or transiently, to new requirements.  相似文献   

4.
The heterotrophic bacterial populations in two contrasting rivers have been examined over a period of 1 year. The populations were analyzed (i) as total heterotrophic counts, (ii) as species numbers, using numerical taxonomy, (iii) by diversity indices, and (iv) by factor analysis. Isolates were obtained by plating directly from water samples and by chemostat enrichment. Four factors emerged which profiled the bacterial community and were common to both rivers. They were, in order of decreasing importance, fermentative metabolism, inorganic nitrogen metabolism, fluorescence-oxidative metabolism, and lack of starch hydrolysis. Several factors produced significant correlations with a range of physicochemical parameters, which were also measured. The correlations suggested an intricate algal-bacterial interaction. The oxidative metabolism factor correlated with rainfall in one river, suggesting that the oxidative bacteria may be washed in from the surrounding land. In the other river, the oxidative-fermentative factor correlated negatively with sunshine. Factor analysis was the most effective method for revealing correlations between bacterial characteristics and the environmental parameters; however, the use of a variety of methods provided more insight into the ecological aspects.  相似文献   

5.
Investigation of Ca2+ transport by calcium pump of the cell plasma membrane of the gastric glands isolated from guinea pigs and its inhibition by metal cations has been performed. The mainly competitive type of Ca2+ translocation inhibition by the calcium pump by metals cations (0.025-1.00 mM) was determined. Potency of inhibition increases in such an order (I50, mM): Ba2+ (0.336) < Sr2+ (0.251) < Mn2+ (0.099) < Co2+ (0.029) < Cd2+ (0.016). It was shown by one-factor dispersion analysis that potency of inhibition depends on ionic radii and hydration enthalpy of metal cations and also on stability constants of their complexes with oxygen-containing bioligands (acetic, aspartic and glutamic acid) (hx2 = 83.73-85.95). Dependence of the inhibition constants (I50) on ionic radii is most adequately described by the parabolic equation, such a dependence on hydration enthalpy and stability constants with oxygen-containing bioligands--by exponential or multiplicative equations. The conclusion has been made that selective Ca2+ translocation by the calcium pump and its inhibition by metal cations is determined by the interaction between energy of their interaction with cation-binding sites of the transport system and energy of hydration. Energetics of such interactions depends on the steric factors. The physicochemical model of the Ca2+ selective translocation by calcium pump and its inhibition by metal cations has been proposed.  相似文献   

6.
7.
The feasibility of ecological standardization of physicochemical factors that do not refer to concentrations of polluting substances (water regime, water temperature, and pH) is confirmed. The opportunity of standardization is provided with the approach developed by the authors, which is based on joint analysis of the data of biological and physicochemical monitoring. Additional opportunities provided by the method used for the analysis are connected with calculating the admissible influence values that vary in time. The seasonal dynamics of the obtained ecologically tolerable levels (ETL) for factors disturbing the well being of biological indicators is investigated. The water sample points are analyzed concerning their ecological well being or ill being depending on observance or nonobservance of ETL values.  相似文献   

8.
Although mammalian urinary tract epithelium (urothelium) is generally considered impermeable to water and solutes, recent data suggest that urine constituents may be reabsorbed during urinary tract transit and storage. To study water and solute transport across the urothelium in an in vivo rat model, we instilled urine (obtained during various rat hydration conditions) into isolated in situ rat bladders and, after a 1-h dwell, retrieved the urine and measured the differences in urine volume and concentration and total quantity of urine urea nitrogen and creatinine between instilled and retrieved urine in rat groups differing by hydration status. Although urine volume did not change >1.9% in any group, concentration (and quantity) of urine urea nitrogen in retrieved urine fell significantly (indicating reabsorption of urea across bladder urothelia), by a mean of 18% (489 mg/dl, from an instilled 2,658 mg/dl) in rats receiving ad libitum water and by a mean of 39% (2,544 mg/dl, from an instilled 6,204 mg/dl) in water-deprived rats, but did not change (an increase of 15 mg/dl, P = not significant, from an instilled 300 mg/dl) in a water-loaded rat group. Two separate factors affected urea nitrogen reabsorption rates, a urinary factor related to hydration status, likely the concentration of urea nitrogen in the instilled urine, and a bladder factor(s), also dependent on the animal's state of hydration. Urine creatinine was also absorbed during the bladder dwell, and hydration group effects on the concentration and quantity of creatinine reabsorbed were qualitatively similar to the hydration group effect on urea transport. These findings support the notion(s) that urinary constituents may undergo transport across urinary tract epithelia, that such transport may be physiologically regulated, and that urine is modified during transit and storage through the urinary tract.  相似文献   

9.
The impact of the length of gemini surfactant spacer on complexation and condensation of calf thymus DNA by cationic mixed phospholipid/gemini liposomes was investigated by monitoring the conformational changes of DNA by circular dichroism and the lipid hydration level by the emission characteristics of the fluorescent probe laurdan included in the lipid bilayer. The length of the spacer was shown to influence, on one hand, the hydration level and the organization of the corresponding liposomes and, on the other, the variation of lipid hydration level and the DNA conformation upon complexation. In fact, in correspondence with the longest spacer we observed more hydrated liposomes, probably organized in domains, a higher extent of dehydration promoted by the addition of DNA, and a minor extent of DNA conformational change. The physicochemical features of lipoplexes were shown to depend on the [cationic headgroup]/[DNA single base] ratio.  相似文献   

10.
Lipoplexes, which are formed spontaneously between cationic liposomes and negatively charged nucleic acids, are commonly used for gene and oligonucleotide delivery in vitro and in vivo. Being assemblies, lipoplexes can be characterized by various physicochemical parameters, including size distribution, shape, physical state (lamellar, hexagonal type II and/or other phases), sign and magnitude of electrical surface potential, and level of hydration at the lipid-DNA interface. Only after all these variables will be characterized for lipoplexes with a broad spectrum of lipid compositions and DNA/cationic lipid (L(+)) mole (or charge) ratios can their relevance to transfection efficiency be understood. Of all these physicochemical parameters, hydration is the most neglected, and therefore the focus of this study. Cationic liposomes composed of DOTAP without and with helper lipids (DOPC, DOPE, or cholesterol) or of DC-Chol/DOPE were complexed with pDNA (S16 human growth hormone) at various DNA(-)/L(+) charge ratios (0.1-3.2). (DOTAP=N-(1-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride; DC-Chol=(3beta-[N-(N',N'-dimethylaminoethane)-carbamoyl]-cholester ol; DOPC=1, 2-dioleoyl-sn-glycero-3-phosphocholine; DOPE=1, 2-dioleoyl-sn-glycero-3-phosphoethanolamine). The hydration levels of the different cationic liposomes and the DNA separately are compared with the hydration levels of the lipoplexes. Two independent approaches were applied to study hydration. First, we used a semi-quantitative approach of determining changes in the 'generalized polarization' (GP) of laurdan (6-dodecanoyl-2-dimethylaminonaphthalene). This method was recently used extensively and successfully to characterize changes of hydration at lipid-water interfaces. Laurdan excitation GP at 340 nm (GP(340)DOTAP. The GP(340) of lipoplexes of all lipid compositions (except those based on DC-Chol/DOPE) was higher than the GP(340) of the cationic liposomes alone and increased with increasing DNA(-)/L(+) charge ratio, reaching a plateau at a charge ratio of 1. 0, suggesting an increase in dehydration at the lipid-water interface with increasing DNA(-)/L(+) charge ratio. Confirmation was obtained from the second method, differential scanning calorimetry (DSC). DOTAP/DOPE lipoplexes with charge ratio 0.44 had 16.5% dehydration and with charge ratio 1.5, 46.4% dehydration. For DOTAP/Chol lipoplexes with these charge ratios, there was 17.9% and 49% dehydration, respectively. These data are in good agreement with the laurdan data described above. They suggest that the dehydration occurs during lipoplex formation and that this is a prerequisite for the intimate contact between cationic lipids and DNA.  相似文献   

11.
The micellization process of dodecyltrimethylammonium chloride (DTAC) and bromide (DTAB) was studied at 313 K. Nuclear magnetic resonance and calorimetric methods were used. The calorimetric titration curves permitted determination of the critical micelle concentration (CMC) and enthalpy of the micellization process (deltaHm) of the compounds studied. The results obtained were compared to those obtained at 298 K. It was found that calorimetric curves obtained at 313 K for both compounds were similar to each other in contrast to 298 K. Especially a great difference in the shape of curves was observed for DTAC. NMR (1H NMR and 13C NMR) spectra were taken below and above the CMC values and chemical shifts (delta) analysed as a function of concentration of the compounds. Comparison of chemical shift-concentration plots with those obtained from measurements performed at lower temperature showed that chemical shifts are of very similar character in both cases for analyzed groups. However, there are some quantitative differences that indicate at smaller difference in hydration of DTAB and DTAC micelles at elevated temperature. This may be the reason of decrease of differences between micellization processes of DTAC and DTAB compounds. The smaller hydration may be, in turn, the result of diminishing differences in physicochemical properties of bromide and chloride ions with temperature.  相似文献   

12.
Multinuclear NMR study of enzyme hydration in an organic solvent   总被引:2,自引:0,他引:2  
Multinuclear NMR spectroscopy has been used to study water bound to subtilisin Carlsberg suspended in tetrahydrofuran (THF), with the water itself employed as a probe of the hydration layer's physicochemical and dynamic characteristics. The presence of the enzyme did not affect the intensity, chemical shift or linewidth of water (up to 8% v/v) added to THF, as measured by 17O- and 2H-NMR. This finding suggests that hydration of subtilisin can be described by a three-state model that includes tightly bound, loosely bound, and free water. Solid-state 2H-NMR spectra of enzyme-bound D2O support the existence of a non-exchanging population of tightly bound water. An important implication is that the loosely-bound water is the same as free water from an NMR viewpoint. This loosely bound water must also be the water responsible for the large increase in catalytic activity observed in previous hydration studies.  相似文献   

13.
The primary hydration process of native biopolymers is analyzed in a brief review of the literature, pertaining to various aspects of biopolymer–water systems. Based on this analysis, a hydration model is proposed that implies that the solution conformation of native biopolymers is stable at and above a critical degree of hydration (hp = 0.06–0.1 g H2O/g polymer). This water content corresponds to the fraction of strongly bound water, and amounts to ~20% of the primary hydration sphere. In order to test this model, detailed sorption–desorption scanning experiments were performed on a globular protein (α-chymotrypsin). The results obtained are consistent with the proposed hydration model. They show that under certain experimental conditions, sorption isotherms can be obtained that do not exhibit hysteresis. These data represent equilibrium conditions and are thus accessible to thermodynamic treatment. Valid thermodynamic functions, pertinent to the interaction of water with biopolymers in their solution state, can be obtained from these sorption experiments.  相似文献   

14.
The glycosaminoglycan (GAG) hyaluronan (HA) is recognized as an important structural component of the extracellular matrix, but it also interacts with cells during embryonic development, wound healing, inflammation, and cancer; i.e., important features in normal and pathological conditions. The specific physicochemical properties of HA enable a unique hydration capacity, and in the last decade it was revealed that in the interstitium of the renal medulla, where the HA content is very high, it changes rapidly depending on the body hydration status while the HA content of the cortex remains unchanged at very low amounts. The kidney, which regulates fluid balance, uses HA dynamically for the regulation of whole body fluid homeostasis. Renomedullary HA elevation occurs in response to hydration and during dehydration the opposite occurs. The HA-induced alterations in the physicochemical characteristics of the interstitial space affects fluid flux; i.e., reabsorption. Antidiuretic hormone, nitric oxide, angiotensin II, and prostaglandins are classical hormones/compounds involved in renal fluid handling and are important regulators of HA turnover during variations in hydration status. One major producer of HA in the kidney is the renomedullary interstitial cell, which displays receptors and/or synthesis enzymes for the hormones mentioned above. During several kidney disease states, such as ischemia-reperfusion injury, tubulointerstitial inflammation, renal transplant rejection, diabetes, and kidney stone formation, HA is upregulated, which contributes to an abnormal phenotype. In these situations, cytokines and other growth factors are important stimulators. The immunosuppressant agent cyclosporine A is nephrotoxic and induces HA accumulation, which could be involved in graft rejection and edema formation. The use of hyaluronidase to reduce pathologically overexpressed levels of tissue HA is a potential therapeutic tool since diuretics are less efficient in removing water bound to HA in the interstitium. Although the majority of data describing the role of HA originate from animal and cell studies, the available data from humans demonstrate that an upregulation of HA also occurs in diabetic kidneys, in transplant-rejected kidneys, and during acute tubular necrosis. This review summarizes the current knowledge regarding interstitial HA in the role of regulating kidney function during normal and pathological conditions. It encompasses mechanistic insights into the background of the heterogeneous intrarenal distribution of HA; i.e., late nephrogenesis, its regulation during variations in hydration status, and its involvement during several pathological conditions. Changes in hyaluronan synthases, hyaluronidases, and binding receptor expression are discussed in parallel.  相似文献   

15.
The data on sensitivity of cholinesterases (ChE) of different insects to irreversible inhibitors, as well as the data on physicochemical parameters of amino acids constituting their active centers, were treated by factor analysis and compared. These both characteristics have been shown to be connected with the taxonomical position of the insects. There is revealed the “material substrate” of the factors responsible for the action specificity, which are specific sites in the ChE active center.  相似文献   

16.
Rozhkov SP 《Biofizika》2001,46(1):53-59
It is shown that water-ion homeostasis in a water-biopolymer-salt system is realized when proportion of the concentrations of the components changes in the definite range. The mechanism of instantaneous osmotic regulating reaction is discussed, which is based on the ability of the system to physicochemical redistribution of the components of the solution and the formation of supramolecular structures in the form of dynamic biopolymer clusters. Quasiequilibrium biopolymer<-->cluster leads to changes in the properties of the hydration water phase that provide the stabilization of water activity and the ability of hydration water to dissolve electrolyte ions. It regulates osmotic pressure and surface tension in water-protein matrix. This process supports a balance of stabilizing and destabilizing forces that affect protein structure and determine its functional activity.  相似文献   

17.
Development of an in vitro model of primate cervical goblet cells   总被引:1,自引:0,他引:1  
Mucins, are densely packed in secretory granules of goblet cells. Upon exocytosis they undergo massive hydration that results in the formation of the mucus gel. Because the mucin polymer network is held together by tangles and low energy bonds, the rheological properties of this gel are mainly determined by the degree of postexocytotic hydration. Hydration in mucus is governed by a Donnan equilibrium as it is driven by electrostatic interaction among the polyionic charges of the mucins and other fixed polyions. Although, variations of charge density of the mucin polymer could be an efficient physiologic mechanism to control the rate of mucus hydration and rheology, this subject has not been investigated. In here we describe a primary tissue culture system of cervical goblet cells of the monkey uterus. This preparation allows to measure directly the kinetic of hydration of exocytosed mucins. Because the physicochemical parameters of the bathing medium can be effectively controlled, variations in the kinetic of mucins swelling upon exocytosis, can be used as a convenient indicator of fluctuations of charge density in secretory products. Since the cervical mucosa readily respond to endocrine influences, this preparation can provide a useful model to study the effect of hormones or other transmitters on polyionic charge density of secretory product.  相似文献   

18.
19.
This study evaluated the accuracy with which the dual-energy X-ray absorptiometer (Hologic QDR 4500A) measured fat-free mass (FFM), fat mass (FM), and hydration of FFM. In a study of 58 men and women (ages 70-79 yr), the QDR 4500A was found to provide a systematically higher estimate of FFM and lower estimate of FM than a four-component model of body composition. A correction factor from this study was developed and applied to two other samples (n = 13 and 37). We found mean corrected levels of FFM and FM to be equivalent to that obtained by the four-component model or total body water. In addition, the hydration of the corrected FFM was closer to the established hydration level in adult samples and that obtained from the four-component model. These findings suggest that the current calibration of the fan-beam system of the Hologic QDR 4500A provides an overestimate of FFM and underestimate of FM compared with reference methods.  相似文献   

20.
Blue fluorescent protein (BFP) is a mutant of green fluorescent protein (GFP), where the chromophore has been modified to shift the emitted fluorescence into the blue spectral region. In this study, MD calculations were performed with the GROMACS simulation package and AMBER force field to investigate the dependence of BFPs physicochemical properties on temperature and applied pressure. The MD approach enabled us to calculate the compressibility of protein itself, separately from the nontrivial contribution of the hydration shell, which is difficult to achieve experimentally. The computed compressibility of BFP (3.94 x10(-5) MPa(-1)) is in agreement with experimental values of globular proteins. The center-of-mass diffusion coefficient of BFP and its dependence on temperature and pressure, which plays an important role in its application as a probe for intracellular liquid viscosity measurement, was calculated and found to be in good agreement with photobleaching recovery experimental data. We have shown that decreased temperature as well as applied pressure increases the water viscosity, but the concomitant decrease of the BFP diffusion coefficient behaves differently from Stokes-Einstein formula. It is shown that the number of hydrogen bonds around the protein grows with pressure, which explains the aforementioned deviation. Pressure also reduces root mean square (RMS) fluctuations, especially those of the most flexible residues situated in the loops. The analysis of the RMS fluctuations of the backbone Calpha atoms also reveals that the most rigid part of BFP is the center of the beta-barrel, in accord with temperature B factors obtained from the Protein Data Bank.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号