首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Rhizobium sp. isolated from the root nodules of Clitoria ternatea L., a leguminous twiner, produced a high amount of IAA (16.4 μg/ml) from tryptophan in an unsupplemented basal medium. The production of IAA started simultaneously with the growth and had no different growth and production phase. The growth and production were parallel and increased up to 45–50 h. The IAA production by the Rhizobium sp. was increased by 520% when the medium was supplemented with fructose (1.5%), MnSO4 (1.0 μg/ml), riboflavin (0.10 μg/ml) and Triton X-100 (0.01%). The possible role of the rhizobial production of IAA on the rhizobia-legume symbiosis is discussed.  相似文献   

2.
The Rhizobium sp. When isolated form the root nodules of a leguminous climbing shrub Derris scandens produced a high amount of indole acetic acid (IAA) (135.2 μg/ml) from the tryptophan-supple-mented basal medium. Growth and IAA production started simultaneously, and the maximum amount of IAA was produced as a secondary metabolite in the stationary phase of growth. The IAA production by the Rhizobium sp. was increased by 503% when the medium was supplemented with mannitol (2%), KNO3 (0.2%), nicotinic acid (0.1 μg/ml) and MnSO4 (1 μg/ml) in addition to tryptophan (4 mg/ml)/ The possible role of the rhizobial production of IAA on the rhizobia-legume symbiosis is also discussed.  相似文献   

3.
The root nodules of Melilotus alba DESR ., a fodder legume, contained high amounts of IAA. A tryptophan pool present in the nodule might serve as a source of IAA production. Presence of IAA oxidase and peroxidase in the nodules indicated the metabolism of IAA, at least in part, in the nodules. The Rhizobium species isolated from the root nodules produced a high amount of IAA (190 μg/ml) from L-tryptophan supplemented basal medium. IAA production and microbial growth were coincident. The production of IAA by the Rhizobium sp. was increased by 315% when the medium was supplemented with lactose (1%), NiCl2 (10 μg/ml), cetyl pyridinium chloride (0.5 μg/ml) and glutamic acid (0.4%), in addition to L-tryptophan (3 mg/ml). The possible role of the rhizobial production of IAA on the rhizobia-legume symbiosis is discussed.  相似文献   

4.
The study of the rhizobial root nodules of the monocotyledonous tree Roystonea regia revealed that the Rhizobium sp. isolated from the root nodules produced high amounts (45.6 μg/ml) of indole acetic acid (IAA) from L‐tryptophan supplemented basal medium. The IAA production reached its optimum using 3 mg/ml of L‐tryptophan. The preferred carbon and nitrogen sources were glucose and KNO3 and the optimum concentrations 1% and 0.02%, respectively. FeSO4 × 7 H2O was found to be the only metal ion that increased IAA production. An optimum IAA production was also achieved when the basal medium was supplemented with glucose (1%), FeSO4 × 7 H2O (10 μg/ml), KNO3 (0.02%) as well as EDTA (5 μg/ml) and L‐tryptophan (3 mg/ml). The possible role of IAA production in the monocotyledonous tree‐Rhizobium symbiosis is discussed. Hormone production is shown to be the beneficial aspect of this symbiosis as shown earlier in dicotyledonous plants.  相似文献   

5.
Rhizobium sp. isolated from the root nodulesof Erythrina indica Lamk., a leguminous tree, produced large amounts of indoleacetic acid (IAA) from tryptophan. L-Tryptophan (2 mg/ mL) was preferred to DL-tryptophan for IAA synthesis. Attempts were made to optimize the cultural requirements for an accelerated IAA production. An enrichment of the carbon-free incubation medium with maltose (1 %), MnSO4.H2O (5 μg/mL), and Triton X-100 (100 ppm) promoted the synthesized IAA content of the medium by 480 %.  相似文献   

6.
The Rhizobium sp., isolated from the root nodules of the leguminous fodder herb Melilotus alba, produced large amounts of extracellular polysaccharides (EPS) (963.5 μg/ml) in a yeast extract mannitol medium. Growth and EPS production started simultaneously, but EPS production reached its maximum during the stationary phase of growth of the bacteria, at 20 hours. EPS production was increased with all of the thirteen sugars tested. Different nitrogen sources, such as nitrates, glutamic acid, casamino acid and L-asparagine, increased the EPS production although it was inhibited by glycine, nitrite and ammonium salts. Among the vitamins and metal ions, only pyridoxal phosphate and ZnSO4 promoted EPS production. Attempts were made to optimize the cultural requirements for growth and maximum EPS production. Maximum EPS production (1457.0 μg/ml) was obtained when the medium was supplemented with glucose (1%), pyridoxal phosphate (2 μ g/ml), ZnSO4 × 7 H2O (10 μg/ml) and glutamic acid (0.1%). Under these conditions, the production was increased by 254.3% compared to the control. The EPS contained arabinose, xylose and rhamnose monomers. The presence of arabinose and xylose in the EPS produced by a Rhizobium sp. was uncommon.  相似文献   

7.
The ability of the Rhizobium sp., isolated from the root nodules of the leguminous pulse yielding shrub Cajanus cajan, to produce extracellular polysaccharides (EPS) was checked. A large amount of EPS (1, 128 μg/ml) was produced by the bacteria in yeast extract mannitol medium. Growth and EPS production started simultaneously, but the production reached its maximum level in the stationary phase of growth at 28 h. The EPS production by this Rhizobium sp. was much higher than by many other strains from nodules of Cajanus cajan which took a much longer time to reach maximum EPS production than this strain. The maximum EPS production (2,561 μg/ml) was obtained when the medium was supplemented with mannitol (1%), cetyl pyridinium chloride (2 μg/ml) and KNO3 (0.2%), in which the production was increased by 276% compared to the control. The EPS production rose in the period up to 65 h with increased mannitol concentration. The EPS contained arabinose, xylose and rhamnose monomers. The possible role of rhizobial EPS production in root nodule symbiosis is discussed.  相似文献   

8.
A Rhizobium sp. isolated from the root nodules of a leguminous pulse-yielding shrub, Cajanus cajan, was found to produce high amounts (99.7 microg/ml) of indole acetic acid (IAA) during growth in basal medium supplemented with L-tryptophan. The Rhizobium sp. was a fast growing species which reached its stationary phase at 28 h. The IAA production could be increased upto 653.3% over control by supplementing the carbon-free incubation medium with glucose (5 g/l), NiCl2 (10 microg/ml) and glutamic acid (0.5 g/l). The possible role of rhizobial IAA on the rhizobia-legume symbiosis is discussed.  相似文献   

9.
The Rhizobium sp. isolated from healthy and mature root nodules of a leguminous tree, Dalbergia lanceolaria Linn. f., preferred mannitol and KNO3 for growth as carbon and nitrogen sources, respectively. The bacterium produced a high amount (22.3 microg/ml) of indole acetic acid (IAA) from L-tryptophan supplemented basal medium. Growth and IAA production started simultaneously. IAA production was maximum at 20 hr when the bacteria reached the stationary phase of growth. Cultural requirements were optimized for maximum growth and IAA production. The IAA production by the Rhizobium sp. was increased by 270.8% over control when the medium was supplemented with mannitol (1%,w/v), SDS (1 microg/ml), L-asparagine (0.02%,w/v) and biotin (1 microg/ml) in addition to L-tryptophan (2.5 mg/ml). The possible role of IAA production in the symbiosis is discussed.  相似文献   

10.
From the root nodules of Alysicarpus vaginalis DC, the symbiont was isolated and identified as a Rhizobium sp. The bacteria produced a high amount (107 microg/ml) of indole acetic acid (IAA) in culture from tryptophan supplemented yeast extract mannitol medium. The isolate preferred L-isomer of tryptophan for maximum IAA production. The production was maximum when the bacteria reached its stationary phase of growth. The production of IAA could be increased up to 70% over yeast extract glucose medium by supplementing ZnSO4, 7H2O (0.5 microg/ml). L-asparagine (0.2%) and sodium dodecyl sulfate (1.0 microg/ml). The possible relationship between the rhizobial IAA production and legume-rhizobia symbiosis is discussed.  相似文献   

11.
The root nodules ofMelilotus alba, a leguminous fodder herb, contain a high amount of indoleacetic acid (IAA). The tryptophan pool present in the nodule might serve as a source for the IAA production. Metabolism of IAA in the nodules was evidenced by the presence of IAA-metabolizing enzymes, IAA oxidase and peroxidase. A high amount of IAA was produced by the symbiont isolated from the nodules in culture, when supplemented with tryptophan. For IAA production, the bacteria preferred thel-isomer over thedl- ord-isomer of tryptophan. The possible role of nodular IAA production on the legume-Rhizobium symbiosis is discussed.  相似文献   

12.
The root nodules of Phaseolus mungo (a herbaceous leguminous pulse) contained a high amount of 3-indolylacetic acid (IAA). A tryptophan pool present in the nodule might play the role of precursor for IAA production. From the root nodule a Rhizobium sp. was isolated. The symbiont produced a large amount of IAA (142 mug/mL) from L-tryptophan-supplemented basal medium. The production of IAA by the symbiont was much increased over the control when a L: -tryptophan (2 mg/mL) supplemented C-free mineral medium was enriched with mannitol (1 %), L: -asparagine (0.3 %) and thiamine hydrochloride (1 mug/mL). The possible role of the rhizobial production of IAA on the rhizobia-legume symbiosis is discussed.  相似文献   

13.
A monocotyledonous tree, Roystonea regia, was found to bear root nodules. The root nodules contained a high amount (16.9 μg/g fresh mass) of indole acetic acid (IAA). A big tryptophan pool (1555.1 μg/g fresh mass) was found in the root nodules, which might serve as a source of IAA production. The presence of IAA-metabolizing enzymes IAA oxidase and peroxidase indicated metabolism of IAA in the root nodules. The symbiont isolated from the root nodules of R. regia, a Rhizobium sp., produced high amount of IAA in culture when supplemented with tryptophan. The possible role of this IAA production in the monocotyledonous tree–Rhizobium symbiosis is discussed. Received: 31 December 1997 / Accepted: 5 February 1998  相似文献   

14.
A simple and rapid HPLC-based method was developed for simultaneous determination of major classes of plant growth regulators (PGRs) in Monostroma and different species of Ulva. The plant growth regulators determined included gibberellic acid (GA3), indole-3-acetic acid (IAA), abscisic acid (ABA), indole-3-butyric acid (IBA), salicylic acid and kinetin riboside (KR) and their respective elution time was 2.75, 3.3, 3.91, 4.95, 5.39 and 6.59 min. The parameters optimized for distinct separation of PGRs were mobile phase (60:40 methanol and 0.6% acetic acid in water), column temperature (35 °C) and flow rate (1 ml/min). This method presented an excellent linearity (0.2–100 μg/ml) with limit of detection (LOD) as 0.2 μg/ml for ABA, 0.5 μg/ml for KR and salicylic acid, and 1 μg/ml for IAA, IBA and GA3. The precision and accuracy of the method was evaluated after inter and intra day analysis in triplicates. The effect of plant matrix was compensated after spiking and the resultant recoveries estimated were in the range of 80–120%. Each PGR thereby detected were further characterized by ESI-MS analysis. The method optimized in this study determined IBA along with IAA for the first time in the seaweed species investigated except Ulva linza where the former was not detected. In all the species studied, ABA level was detected to be the highest while kinetin riboside was the lowest. In comparison to earlier methods of PGR analysis, sample preparation and analysis time were substantially reduced while allowing determination of more classes of PGRs simultaneously.  相似文献   

15.
A total of 216 bacterial strains were isolated from rice rhizospheric soils in Northern Thailand. The bacterial strains were initially tested for solubilization of inorganic phosphate, indole acetic acid (IAA) production, selected strains were then tested for optimized conditions for IAA production and whether these caused stimulatory effects on bean and maize seedling growth. It was found that all strains had solubilized inorganic phosphate (P), but only 18.05% produced IAA. The best IAA producer was identified by biochemical testing and 16S rDNA sequence analysis as Klebsiella SN 1.1. In addition to being the best IAA producer, this strain was a high P-solubilizer and produced the highest amount of IAA (291.97 ± 0.19 ppm) in culture media supplemented with l-tryptophan. The maximum production of IAA was achieved after 9 days of incubation. The culture requirements were optimized for maximum IAA production. The tested of IAA production by selected isolates was studied in a medium with 0, 0.1, 0.2, 0.5, 0.7, and 0.9% (v/v) l-tryptophan. Low levels (12.6 ppm) of IAA production was recorded without tryptophan addition. Production of IAA in Klebsiella SN 1.1 increased with an increase to 0.2% (v/v) tryptophan concentration. The production of IAA was further confirmed by extraction of crude IAA from this isolate and subsequent Thin Layer Chromatography (TLC) analysis. A specific spot from the extracted IAA production was found to correspond with a standard spot of IAA with the same R f value. The Klebsiella strain SN 1.1 also demonstrated stimulatory effects on bean seedlings in vivo.  相似文献   

16.
The stem nodules of the legumeAeschynomene aspera contain indoleacetic acid and a high amount of tryptophan. TheAzorhizobium caulinodans isolated from the stem nodules of the leguminous emergent hydrophyte produced a high amount of IAA (14.8 mg/L) inl-tryptophan-supplemented basal medium. The IAA yields paralleled the culture growth rate and increased up to 52 h. No separate growth and production phase was observed. The IAA production was increased 344% when the medium was supplemented withl-tryptophan, sucrose, FeSO4·7H2O, NaNO3, ascorbic acid and sodium dodecyl sulfate. The possible role of the IAA production in the legume-bacterium symbiosis is discussed.  相似文献   

17.
The mature root nodules of Phaseolus mungo (L.), a leguminous pulse, contain higher amount of indole acetic acid (IAA) than non-nodulated roots. The tryptophan pool present in the mature nodule and young roots might serve as a precursor for the IAA production. Presence of IAA metabolising enzymes – IAA oxidase and peroxidase – indicate the metabolism of IAA in the nodules and roots. In culture, the symbiont, isolated from the nodules, produced a high amount of IAA, when tryptophan was supplied in the medium as a precursor. The symbiont preferred l-isomer over the dl- or d-isomer of tryptophan for IAA production.The important physiological implication of the IAA production in the legume-Rhizobium symbiosis is discussed.  相似文献   

18.
Total extracts and kuwanon G from Morus nigra root bark showed antifungal activity against several phytopathogenic fungi, with minimal inhibitory concentration (MIC50) ranging from 32 to 128 μg/ml and from 16 to 64 μg/ml, respectively. Acetonic extracts inhibited 60% B. cinerea biofilm formation at concentration of 128 μg/ml.  相似文献   

19.
We evaluated the production of indole-3-acetic acid (IAA) by Azospirillum brasilense strains in vitro (cell culture supernatants) and in vivo (stems and roots of maize seedlings) to clarify the role of this phytohormone as a signaling and effector molecule in the symbiotic interaction between maize and A. brasilense. The three strains all showed IAA production when cultured in NFb medium supplemented with 100 μg/ml L-tryptophan. The level of IAA production was 41.5 μg/ml for Yu62, 12.9 μg/ml for Az39, and 0.15 μg/ml for ipdC-. The release of IAA into culture medium by the bacteria appeared to be the main activator of the early growth promotion observed in the inoculated maize seedlings. The application of supernatants with different IAA contents caused significant differences in the seedling growth. This observation provides the basis for novel technological tools for effective quality control procedures on inoculants. The approach described can be incorporated into different inoculation methods, including line sowing, downspout, and foliar techniques, and increase the sustainability of symbiotic plant-bacteria systems.  相似文献   

20.
Malignant murine melanoma (BL6-F10) cells convert arachidonic acid primarily to PGD2, PGF, PGE2, PGI2 in descending order of magnitude. Supplementation with 1–10 μg/ml vitamin E succinate resulted in a significant (P ≤ 0.05) decrease in PGD2 levels at vitamin concentrations of 3,5,7 and 10 μg/ml respectively, while PGF levels were significantly decreased at 1,3,5 (P ≤ 0.05), 7 and 10 μg/ml (P ≤ 0.01) vitamin E succinate. BL6-F10 cells supplemented with 7 and 10 μg/ml vitamin E succinate showed a marked increase in PGE2 levels with a significant increase occurring at 10 μg/ml (P ≤ 0.025). PGI2 levels followed a similar trend to PGE2 with a significant increase (P ≤ 0.05) occurring at 10 μg/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号