首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Hyaluronan (HA) is a large glycosaminoglycan that is not only a structural component of extracellular matrices, but also interacts with cell surface receptors to promote cell proliferation, migration, and intracellular signaling. HA is a major component of the extracellular matrix of the distal subapical mesenchymal cells of the developing limb bud that are undergoing proliferation, directed migration, and patterning in response to the apical ectodermal ridge (AER), and has the functional potential to be involved in these processes. Here we show that the HA synthase Has2 is abundantly expressed by the distal subridge mesodermal cells of the chick limb bud and also by the AER itself. Has2 expression and HA production are downregulated in the proximal central core of the limb bud during the formation of the precartilage condensations of the skeletal elements, suggesting that downregulation of HA may be necessary for the close juxtaposition of cells and the resulting cell-cell interactions that trigger cartilage differentiation during condensation. Overexpression of Has2 in the mesoderm of the chick limb bud in vivo results in the formation of shortened and severely malformed limbs that lack one or more skeletal elements. Skeletal elements that do form in limbs overexpressing Has2 are reduced in length, exhibit abnormal morphology, and are positioned inappropriately. We also demonstrate that sustained HA production in micromass cultures of limb mesenchymal cells inhibits formation of precartilage condensations and subsequent chondrogenesis, indicating that downregulation of HA is indeed necessary for formation of the precartilage condensations that trigger cartilage differentiation. Taken together these results suggest involvement of HA in various aspects of limb morphogenesis.  相似文献   

2.
Skeletal muscle within the vertebrate limb originates from the somite. Much work has focussed upon the role of secreted signalling molecules of the Hedgehog, fibroblast growth factor (FGF), bone morphogenetic protein (BMP), and Wnt families plus their associated antagonists in establishing somitic cell types, yet there is no consensus on how these signals combine to influence muscle patterning. When somitic cells migrate into the limb bud, they become subject to a new set of guidance and patterning cues. Here we discuss the possible roles played by signalling proteins, particularly Hedgehogs, in guiding the cells of the limb musculature to their fate.  相似文献   

3.
4.
Galvanic vestibular stimulation (GVS) is a research tool used to activate the vestibular system in human subjects. When a low-intensity stimulus (1-4 mA) is delivered percutaneously to the vestibular nerve, a transient electromyographic response is observed a short time later in lower limb muscles. Typically, galvanically evoked responses are present when the test muscle is actively engaged in controlling standing balance. However, there is evidence to suggest that GVS may be able to modulate the activity of lower limb muscles when subjects are not in a free-standing situation. The purpose of this review is to examine 2 studies from our laboratory that examined the effects of GVS on the lower limb motoneuron pool. For instance, a monopolar monaural galvanic stimulus modified the amplitude of the ipsilateral soleus H-reflex. Furthermore, bipolar binaural GVS significantly altered the onset of activation and the initial firing frequency of gastrocnemius motor units. The following paper examines the effects of GVS on muscles that are not being used to maintain balance. We propose that GVS is modulating motor output by influencing the activity of presynaptic inhibitory mechanisms that act on the motoneuron pool.  相似文献   

5.
Retinoids, homeobox genes, and limb morphogenesis   总被引:35,自引:0,他引:35  
J P Brockes 《Neuron》1989,2(4):1285-1294
  相似文献   

6.
Morphogenesis of vertebrate limb, specifically that of the chick wing, has been recognized as a suitable model to study the cellular and molecular mechanisms of pattern formation. The importance of cellular inductive phenomena and the relevance of the processes such as cell division and cell death in the above model are discussed. These studies have revealed the retinoic acid (RA) and retinols as convincing candidates for vertebrate morphogens. The recent discovery that the RA receptors belong to the steroid hormone receptor superfamily might indicate the universality of the RA morphogen and might enlighten the possible mode of its action. Identification and characterization of the 1d locus genes associated with the mouse limb morphogenesis and the possible involvement of the homeobox proteins in chick wing development have opened new prospects in understanding the molecular mechanisms of vertebrate morphogenesis.  相似文献   

7.
8.
9.
10.
BACKGROUND: During somitogenesis, segmental patterns of gene activity provide the instructions by which mesenchymal cells epithelialize and form somites. Various members of the Eph family of transmembrane receptor tyrosine kinases and their Ephrin ligands are expressed in a segmental pattern in the rostral presomitic mesoderm. This pattern establishes a receptor/ligand interface at each site of somite furrow formation. In the fused somites (fss/tbx24) mutant, lack of intersomitic boundaries and epithelial somites is accompanied by a lack of Eph receptor/Ephrin signaling interfaces. These observations suggest a role for Eph/Ephrin signaling in the regulation of somite epithelialization. RESULTS: We show that restoration of Eph/Ephrin signaling in the paraxial mesoderm of fss mutants rescues most aspects of somite morphogenesis. First, restoration of bidirectional or unidirectional EphA4/Ephrin signaling results in the formation and maintenance of morphologically distinct boundaries. Second, activation of EphA4 leads to the cell-autonomous acquisition of a columnar morphology and apical redistribution of beta-catenin, aspects of epithelialization characteristic of cells at somite boundaries. Third, activation of EphA4 leads to nonautonomous acquisition of columnar morphology and polarized relocalization of the centrosome and nucleus in cells on the opposite side of the forming boundary. These nonautonomous aspects of epithelialization may involve interplay of EphA4 with other intercellular signaling molecules. CONCLUSIONS: Our results demonstrate that Eph/Ephrin signaling is an important component of the molecular mechanisms driving somite morphogenesis. We propose a new role for Eph receptors and Ephrins as intercellular signaling molecules that establish cell polarity during mesenchymal-to-epithelial transition of the paraxial mesoderm.  相似文献   

11.
Zhu X  Zhu H  Zhang L  Huang S  Cao J  Ma G  Feng G  He L  Yang Y  Guo X 《Developmental biology》2012,365(2):328-338
Wnt proteins are diffusible morphogens that play multiple roles during vertebrate limb development. However, the complexity of Wnt signaling cascades and their overlapping expression prevent us from dissecting their function in limb patterning and tissue morphogenesis. Depletion of the Wntless (Wls) gene, which is required for the secretion of various Wnts, makes it possible to genetically dissect the overall effect of Wnts in limb development. In this study, the Wls gene was conditionally depleted in limb mesenchyme and ectoderm. The loss of mesenchymal Wls prevented the differentiation of distal mesenchyme and arrested limb outgrowth, most likely by affecting Wnt5a function. Meanwhile, the deletion of ectodermal Wls resulted in agenesis of distal limb tissue and premature regression of the distal mesenchyme. These observations suggested that Wnts from the two germ layers differentially regulate the pool of undifferentiated distal limb mesenchyme cells. Cellular behavior analysis revealed that ectodermal Wnts sustain mesenchymal cell proliferation and survival in a manner distinct from Fgf. Ectodermal Wnts were also shown for the first time to be essential for distal tendon/ligament induction, myoblast migration and dermis formation in the limb. These findings provide a comprehensive view of the role of Wnts in limb patterning and tissue morphogenesis.  相似文献   

12.
Here we report a new role for the small GTPase RhoC in the control of limb chondrogenesis. Expression of rhoC is a precocious marker of the zeugopodial and digit blastemas and is induced by treatments with TGFbetas preceding the formation of ectopic digits. As development progresses, expression of rhoC outlines the growing distal tip of the digits, and marks the regions of interphalangeal joint formation. Functional experiments show that RhoC is a negative regulator of chondrogenesis, which controls digit outgrowth and joint segmentation. These functions appear to be mediated by reorganization of the actin cytoskeleton and modification of the adhesive properties of the mesenchymal cells.  相似文献   

13.
14.
15.
Muscarinic acetylcholine receptor in chick limb bud during morphogenesis   总被引:1,自引:0,他引:1  
Summary In the chick embryo a cholinesterase activity appears in various organ anlagen which has been correlated with morphogenetic movements (Drews 1975). The cholinesterase activity is present in the mesenchyme of the limb bud during aggregation of the central chondrogenic core. In the present study binding of tritium labelled quinuclidinyl benzilate ((3H)QNB), a muscarinic antagonist, to homogenates of chick limb buds was investigated by a filtration assay. In the homogenate of limb buds at Stage 24 specific binding of (3H)QNB was demonstrated. Determination of binding constants and inhibition of binding by agonists and antagonists was studied at Stage 25/26. Specific binding was defined by the difference in binding in the absence and presence of atropine (1 M). Specific binding of (3H)QNB reflected a muscarinic receptor. The Kd in two experiments was 0.11 nM and 0.16 nM, the binding capacity was 15.7 fmol (3H)QNB/mg protein and 12.0 fmol (3H)QNB/mg protein, respectively. Data on displacement of specific bound (3H)QNB by various nicotinic and muscarinic ligands confirmed the muscarinic nature of the receptor. Muscarinic ligands inhibited the (3H) QNB binding, whereas nicotinic ligands caused no inhibition at pharmacological concentrations. I conclude that a specific muscarinic acetylcholine receptor is part of the cholinergic system whose presence is indicated by cholinesterase activity in the chondrogenic core of the limb bud during morphogenesis.  相似文献   

16.
17.
18.
Much of what we currently know about digit morphogenesis during limb development is deduced from embryonic studies in the chick. In this study, we used ex utero surgical procedures to study digit morphogenesis during mouse embryogenesis. Our studies reveal some similarities; however, we have found considerable differences in how the chick and the mouse autopods respond to experimentation. First, we are not able to induce ectopic digit formation from interdigital cells as a result of wounding or TGFbeta-1 application in the mouse, in contrast to what is observed in the chick. Second, FGF4, which inhibits the formation of ectopic digits in the chick, induces a digit bifurcation response in the mouse. We demonstrate with cell marking studies that this bifurcation response results from a reorganization of the prechondrogenic tip of the digit rudiment. The FGF4 effect on digit morphogenesis correlates with changes in the expression of a number of genes, including Msx1, Igf2, and the posterior members of the HoxD cluster. In addition, the bifurcation response is digit-specific, being restricted to digit IV. We propose that FGF4 is an endogenous signal essential for skeletal branching morphogenesis in the mouse. This work stresses the existence of major differences between the chick and the mouse in how digit morphogenesis is regulated and is thus consistent with the view that vertebrate digit evolution is a relatively recent event. Finally, we discuss the relationship between the digit IV bifurcation restriction and the placement of the metapterygial axis in the evolution of the tetrapod limb.  相似文献   

19.
The structure and functions of the airways of the lung change dramatically along their lengths. Large-diameter conducting airways are supported by cartilaginous rings and smooth muscle tissue and are lined by ciliated and secretory epithelial cells that are involved in mucociliary clearance. Smaller peripheral airways formed during branching morphogenesis are lined by cuboidal and squamous cells that facilitate gas exchange to a network of fine capillaries. The factors that mediate formation of these changing cell types and structures along the length of the airways are unknown. We report here that conditional expression of fibroblast growth factor (FGF)-18 in epithelial cells of the developing lung caused the airway to adopt structural features of proximal airways. Peripheral lung tubules were markedly diminished in numbers, whereas the size and extent of conducting airways were increased. Abnormal smooth muscle and cartilage were found in the walls of expanded distal airways, which were accompanied by atypically large pulmonary blood vessels. Expression of proteins normally expressed in peripheral lung tubules, including SP-B and pro-SP-C, was inhibited. FGF-18 mRNA was detected in normal mouse lung in stromal cells surrounding proximal airway cartilage and in peripheral lung mesenchyme. Effects were unique to FGF-18 because expression of other members of the FGF family had different consequences. These data show that FGF-18 is capable of enhancing proximal and inhibiting peripheral programs during lung morphogenesis.  相似文献   

20.
Herein, we demonstrate that Lrp6-mediated R-spondin 2 signaling through the canonical Wnt pathway is required for normal morphogenesis of the respiratory tract and limbs. We show that the footless insertional mutation creates a severe hypomorphic R-spondin 2 allele (Rspo2(Tg)). The predicted protein encoded by Rspo2(Tg) neither bound the cell surface nor activated the canonical Wnt signaling reporter TOPFLASH. Rspo2 activation of TOPFLASH was dependent upon the second EGF-like repeat of Lrp6. Rspo2(Tg/Tg) mice had severe malformations of laryngeal-tracheal cartilages, limbs and palate, and lung hypoplasia consistent with sites of Rspo2 expression. Rspo2(Tg/Tg) lung defects were associated with reduced branching, a reduction in TOPGAL reporter activity, and reduced expression of the downstream Wnt target Irx3. Interbreeding the Rspo2(Tg) and Lrp6(-) alleles resulted in more severe defects consisting of marked lung hypoplasia and absence of tracheal-bronchial rings, laryngeal structures and all limb skeletal elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号