首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Green chemistry is a boon for the development of safe, stable and ecofriendly nanostructures using biological tools. The present study was carried out to explore the potential of selected fungal strains for biosynthesis of intra- and extracellular gold nanostructures. Out of the seven cultures, two fungal strains (SBS-3 and SBS-7) were selected on the basis of development of dark pink colour in cell free supernatant and fungal beads, respectively indicative of extra- and intracellular gold nanoparticles production. Both biomass associated and cell free gold nanoparticles were characterized using X-ray diffractogram (XRD) analysis and transmission electron microscopy (TEM). XRD analysis confirmed crystalline, face-centered cubic lattice of metallic gold nanoparticles along with average crystallite size. A marginal difference in average crystallite size of extracellular (17.76 nm) and intracellular (26 and 22 nm) Au-nanostructures was observed using Scherrer equation. In TEM, a variety of shapes (triangles, spherical, hexagonal) were observed in both extra- and intracellular nanoparticles. 18S rRNA gene sequence analysis by multiple sequence alignment (BLAST) indicated 99 % homology of SBS-3 to Aspergillus fumigatus with 99 % alignment coverage and 98 % homology of SBS-7 to Aspergillus flavus with 98 % alignment coverage respectively. Native-PAGE and activity staining further confirmed enzyme linked synthesis of gold nanoparticles.  相似文献   

2.
Aspergillus flavus is a common saprophytic and pathogenic fungus, and its secondary metabolic pathways are one of the most highly characterized owing to its aflatoxin (AF) metabolite affecting global economic crops and human health. Different natural environments can cause significant variations in AF synthesis. Succinylation was recently identified as one of the most critical regulatory post-translational modifications affecting metabolic pathways. It is primarily reported in human cells and bacteria with few studies on fungi. Proteomic quantification of lysine succinylation (Ksuc) exploring its potential involvement in secondary metabolism regulation (including AF production) has not been performed under natural conditions in A. flavus. In this study, a quantification method was performed based on tandem mass tag labeling and antibody-based affinity enrichment of succinylated peptides via high accuracy nano-liquid chromatography with tandem mass spectrometry to explore the succinylation mechanism affecting the pathogenicity of naturally isolated A. flavus strains with varying toxin production. Altogether, 1240 Ksuc sites in 768 proteins were identified with 1103 sites in 685 proteins quantified. Comparing succinylated protein levels between high and low AF-producing A. flavus strains, bioinformatics analysis indicated that most succinylated proteins located in the AF biosynthetic pathway were downregulated, which directly affected AF synthesis. Versicolorin B synthase is a key catalytic enzyme for heterochrome B synthesis during AF synthesis. Site-directed mutagenesis and biochemical studies revealed that versicolorin B synthase succinylation is an important regulatory mechanism affecting sclerotia development and AF biosynthesis in A. flavus. In summary, our quantitative study of the lysine succinylome in high/low AF-producing strains revealed the role of Ksuc in regulating AF biosynthesis. We revealed novel insights into the metabolism of AF biosynthesis using naturally isolated A. flavus strains and identified a rich source of metabolism-related enzymes regulated by succinylation.  相似文献   

3.
We show here that oxidative stress is involved in both sclerotial differentiation (SD) and aflatoxin B1 biosynthesis in Aspergillus flavus. Specifically, we observed that (i) oxidative stress regulates SD, as implied by its inhibition by antioxidant modulators of reactive oxygen species and thiol redox state, and that (ii) aflatoxin B1 biosynthesis and SD are comodulated by oxidative stress. However, aflatoxin B1 biosynthesis is inhibited by lower stress levels compared to SD, as shown by comparison to undifferentiated A. flavus. These same oxidative stress levels also characterize a mutant A. flavus strain, lacking the global regulatory gene veA. This mutant is unable to produce sclerotia and aflatoxin B1. (iii) Further, we show that hydrogen peroxide is the main modulator of A. flavus SD, as shown by its inhibition by both an irreversible inhibitor of catalase activity and a mimetic of superoxide dismutase activity. On the other hand, aflatoxin B1 biosynthesis is controlled by a wider array of oxidative stress factors, such as lipid hydroperoxide, superoxide, and hydroxyl and thiyl radicals.  相似文献   

4.
Aflatoxin formation by Aspergillus flavus   总被引:19,自引:0,他引:19  
  相似文献   

5.
Heterotrophic conversion of l-aspartic acid to nitrification products by Aspergillus flavus was studied in a replacement incubation system. Numerous amino acids supported nitrification; aspartate and glutamate were about equivalent as the best sources of nitrate. Addition of sodium bicarbonate to the incubation system substantially enhanced nitrate formation for all nitrifiable amino acids except aspartic acid, but the basis for the bicarbonate effect is obscure. The yield of nitrate from l-aspartate was not approached by forms of aspartic acid resulting from substitution on the beta carbon, the amino nitrogen, or the gamma carboxyl group or by aspartate presented as the d-configuration. There was no relationship between nitrate formation and the occurrence of such possible intermediates as nitrite, bound hydroxylamine, ammonia, aspergillic acid, and beta-nitropropionic acid. Uniformly labeled (14)C-l-aspartate that was nitrified in replacement incubation led to no accumulation of label in possible nitrification products in the culture filtrate. Label was found in components of the mycelium after acid hydrolysis, with heaviest accumulation in what appeared to be glucosamine and an unidentified compound, possibly acetylglucosamine. Detectable label was redistributed into serine, glycine, and threonine.  相似文献   

6.
Aflatoxin degradative activity was demonstrated in 6- to 12-d-old intact mycelium and cell-free extracts of Aspergillus flavus. The addition of cycloheximide, SKF 525-A or metyrapone to cultures of A. flavus prevented subsequent degradation of the aflatoxins, while in cell-free extracts degradation was inhibited by SKF 525-A, metyrapone and cytochrome c but not by KCN. In cell-free extracts, aflatoxin degradation was enhanced by NADPH and NaIO4. The results suggest the involvement of cytochrome P-450 monooxygenases in the aflatoxin degradative activity of A. flavus.  相似文献   

7.
Summary 13C Nuclear magnetic resonance and fumarase and NAD-malate dehydrogenase isoenzyme studies were carried out in a strain of A. flavus which produces relatively high levels of l-malic acid from glucose. The results of the 13C NMR showed that the 13C label from [1-13C] glucose was incorporated only to C-3 (-CH2-) of l-malic acid and indicated that this acid must be synthesized from pyruvate mainly via oxaloacetate. Electrophoretic analysis has established the presence of unique mitochondrial and cytosolic isoenzymes for fumarase and malate dehydrogenase. Changes in the isoenzyme pattern were observed for malate dehydrogenase but not for fumarase during acid production. Cycloheximide inhibited profoundly both l-malic acid production and the increase in the major isoenzyme of malate dehydrogenase, without affecting either the total activity of fumarase or its isoenzyme pattern. The results suggested that de novo protein synthesis is involved in the increase in the activity of the major isoenzyme of malate dehydrogenase and that this isoenzyme is essential for l-malic acid production and accumulation.  相似文献   

8.
Malic acid accumulation by Aspergillus flavus   总被引:1,自引:0,他引:1  
Summary Scanning electron microscopy revealed that Aspergillus flavus produced unusual crystals and hair-like processes during its l-malic acid production phase. Crystallinic dendritic aggregates were formed on the hyphae growing as pellets. The size and number of crystal aggregates increased during the fermentation in parallel with l-malic acid accumulation. The crystals (composed of calcium malate as well as small amounts of calcium succinate and calcium fumarate) were removed from the hyphae, after incubation with 6N HCl. On day 5 of the fermentation, about 9% of the total amount of l-malic acid produced was accounted for by the attached crystals. In addition to crystal formation we observed the appearance of hair-like processes during the early phase (2 days) of malic acid production only.  相似文献   

9.
Aflatoxin formation by Aspergillus flavus.   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

10.
11.
12.
A problem of paramount importance that has attracted the attention of environmental biologists is the discharge of highly colored effluents into the environment by various industries, which use a wide range of synthetic dyes. The existing chemical methods for dye degradation are not only expensive but also contributes to secondary pollution due to high dose of the chemicals used. Hence an alternative is to exploit the potential of microorganisms to alleviate this problem. The current paper deals with the isolation, characterization, and sugar utilization for better growth of Aspergillus flavus, a marine fungus from the Bay of Bengal. The goal is to assess the bioremediation potential of a variety of synthetic, paper mill, and color photography dyes. A correlation between the amount of sugar used, biomass, and quality of protein produced was observed. This fungus is capable of reducing between 80% and 90% of synthetic dyes and 100% color photography effluents within 3 to 7 days, and 8 days, respectively. Significant effect of carbon sources was observed in the decolorization of the synthetic dye crystal violet, up to 90% in 3 to 7 days, by Aspergillus flavus. The organism showed better growth with fructose as the sole carbon source for the least sugar consumption. Therefore, this fungus can be used as an economical and eco-friendly tool to minimize the pollution by industries to a significant extent.  相似文献   

13.
BackgroundAspergillus osteomyelitis of the ribs is relatively uncommon. It is a debilitating and severe form of invasive aspergillosis.Case reportA 61year-old female presented with spontaneous chest pain on the right side of the rib cage and a palpable soft-tissue mass. FDG-PET/CT scan identified activity in the infected site. The lesion was punctured, and purulent material was sent to the laboratory. Aspergillus complex Flavi was isolated. An antifungal treatment with voriconazole was started. The lesion healed, and no recurrence was observed at 8-month follow-up. Molecular identification of the isolate was based on PCR amplification and sequencing of β-tubulin gene. Aspergillus flavus was identified.ConclusionsOur case highlights the relevance of microbiological studies in patients with osteomyelitis and the involvement of soft tissue. The FDG-PET/CT scan was found to be a useful tool for revealing the extent of the disease and evaluating the response to the antifungal therapy.  相似文献   

14.
15.
In the screening of selective inhibitors of eukaryotic DNA polymerases (pols), dehydroaltenusin was found to be an inhibitor of pol alpha from a fungus (Alternaria tennuis). We succeeded in chemically synthesizing dehydroaltenusin, and the compound inhibited only mammalian pol alpha with IC50 value of 0.5 microM, and did not influence the activities of other replicative pols such as pols delta and epsilon, but also showed no effect on pol alpha activity from another vertebrate, fish, or from a plant species. Dehydroaltenusin also had no influence on the other pols and DNA metabolic enzymes tested. The compound also inhibited the proliferation of human cancer cells with LD50 values of 38.0-44.4 microM. In an in vivo anti-tumor assay on nude mice bearing solid tumors of HeLa cells, dehydroaltenusin was shown to be a promising suppressor of solid tumors. Histopathological examination revealed that increased tumor necrosis and decreased mitotic index were apparently detected by the compound in vivo. Therefore, dehydroaltenusin could be of interest as not only a mammalian pol alpha-specific inhibitor, but also as a candidate drug for anti-cancer treatment.  相似文献   

16.
Toxins other than aflatoxins produced by Aspergillus flavus   总被引:5,自引:0,他引:5  
  相似文献   

17.
18.
Biosynthesis of dimethylarsine by Methanobacterium   总被引:10,自引:0,他引:10  
B C McBride  R S Wolfe 《Biochemistry》1971,10(23):4312-4317
  相似文献   

19.
20.
Homogenates from four adrenal pheochromocytomas converted 4-14C-labeled pregnenolone, 17-hydroxyprogesterone, and dehydroepiandrosterone into androstenedione and testosterone. In addition to these androgens, labeled pregnane substrates were also transformed into corticosteroids, as previously reported, and this conversion occurred in even higher yield. The formation of labeled metabolites of either pathway was greater in homogenates from intraadrenal pheochromocytomas than in those derived from an extraadrenal tumor, but less than in preparations of hyperplastic adrenal cortex. Incubations of subcellular fractions isolated from an adrenal pheochromocytoma showed that the enzyme activities involved in androgen formation from the radioactive substrates studied were associated with the microsomes and required exogenous cofactors. In contrast to adrenocortical tissue, chromaffin cell preparations uniformly failed to convert substrate [4-14C] cholesterol into either androgens or corticosteroids. The data available demonstrate the presence in chromaffin tissue of all of the enzyme activities required for the biosynthesis of androgens and corticosteroids except for those involved in the side-chain scission of cholesterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号