首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dev 1510 mutant of Dictyostelium discoideum differs from the wild type in that unaggregated cells are capable of differentiating into either spores or stalk cells depending on the culture conditions (12). Taking advantage of this fact, the effects of cyclic AMP (cAMP) on differentiation of the mutant cells were examined under conditions that prevent normal morphogenesis. In the presence of low concentrations of exogenous cAMP, the cells differentiated into only stalk cells, whereas in the presence of high concentrations they differentiated into only spores. Untreated cells formed stalk cells, but this was inhibited by addition of phosphodiesterase, indicating that it was induced by a low concentration of cAMP which they produced themselves. Cyclic GMP and dibutyryl cAMP also induced spore formation though less effectively, while 5'AMP, ADP and ATP had no effect. During development, the cells increased in sensitivity to cAMP in that spore formation was induced at lower concentration of cAMP after 4 hr of starvation. Treatment of cells that had been starved for 6hr with 10−4M cAMP for as short a time as 30 min was enough to induce 8% of the cells to form spores.
The effects on cAMP-induced differentiation of chemicals that are known to influence development of the wild type were also examined. Both NH4Cl and KCl inhibited cAMP-induced stalk formation, but had no effect on spore formation. In the presence of arginine, spore formation was induced at a lower concentration of cAMP with higher efficiency. CaCl2, LiCl and KF had no effect on cAMP-induced differentiation.  相似文献   

2.
We have been using sporogenous mutants of Dictyostelium discoideum strain V12M2 to study regulation of cell fate during terminal differentiation of spores and stalk cells. Analyses of intracellular cAMP accumulation, cAMP secretion, cAMP binding to cell surface receptors, and chemotactic sensitivity to exogenous cAMP during aggregation showed that all of these functions were identical in V12M2 and HB200, a sporogenous mutant. We used several methods of altering intracellular cAMP levels in HB200 cells to test the hypothesis that intracellular cAMP levels affect cell fate. First, HB200 amoebae were treated with 5 mM caffeine for 4 h during growth, washed, and allowed to develop in the absence of caffeine. Treated cells had normal levels of intracellular cAMP and adenylate cyclase activities at the beginning of differentiation; by 6 h development, they contained two to three times more intracellular cAMP and two times more GTP-dependent adenylate cyclase activity than untreated cells. However, their level of basal Mn++-dependent adenylate cyclase activity was the same as untreated controls. Thus, treatment of growing HB200 amoebae with caffeine for only 4 h leads to hyperinduction of a GTP-dependent regulator (or inhibition of a negative regulator) of adenylate cyclase during subsequent differentiation, without induction of basal activity. The fraction of amoebae forming spores increased twofold when HB200 amoebae were treated with caffeine during growth. Spore (but not stalk cell) differentiation by such treated cells was blocked by inhibitors of cAMP accumulation. Second, cells grown on nutrient agar accumulated higher levels of intracellular cAMP and formed more spores in vitro than cells grown in shaken suspension.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Rapidly developing (rde) mutants of Dictyostelium discoideum, in which cells precociously differentiated into stalk and spore cells without normal morphogenesis, were investigated genetically and biochemically. Genetic complementation tests demonstrated that the 16 rde mutants isolated could be classified into at least two groups (groups A and C) and that the first described rde mutant FR17 (D. R. Sonneborn, G. J. White, and M. Sussman, 1963, Dev. Biol. 7, 79-93) belongs to group A. Morphological studies revealed several differences in development and final morphology between group A and group C mutants. In group A mutants, the time required for cell differentiation from vegetative cells to aggregation competent cells is reduced, whereas the time required for spore and stalk cell differentiation following the completion of aggregation is shortened in group C mutants. This suggests that group C mutants represent a new class of rde mutants and that there exist at least two mechanisms involved in regulating the timing of development in D. discoideum. Measurements of cell-associated and extracellular phosphodiesterase activities, and intracellular and total cAMP levels revealed that cAMP metabolism in both groups is significantly altered during development. Group A mutants showed precocious and excessive production of phosphodiesterase and cAMP during the entire course of development; intracellular cAMP levels in group C mutants were extremely low, and spore and stalk cell differentiation occurred without an apparent increase in these levels. Thus, while cAMP metabolism is abnormal in all the rde mutants studied, there exist several distinct types of derangement, not necessarily involving the overproduction of cAMP.  相似文献   

4.
The Dd PK2 gene codes for a putative protein of 648 amino acids with a C-terminal half sharing high homology with protein kinase A catalytic subunits from other organisms. In order to find out more about the physiological role of the Dd PK2 kinase, its gene, and a version having a frame shift mutation in the middle of the catalytic region, were overexpressed in developing Dictyostelium cells. Both the intact gene (K-) and the frame shift mutant (Kdel-) caused rapid development with spores formed in 16-18 hours compared to the 24 hours required by their parent. This result was confirmed by the pattern of expression of some developmentally regulated genes. Other rapid developing strains (rde) are activated in the cAMP second messenger system. Both K- and Kdel-containing strains have lower cAMP levels than the parental strain during late development, thus resembling rdeC mutants. K-cells (but not Kdel-cells) produced bizarre fruiting bodies with many prostrate forms. The parallel with rde mutants was confirmed by demonstrating that K-cells are able to form spores in submerged monolayer culture. Furthermore, K-cells have about four times more protein kinase A (cAPK) activity than wild-type cells. These results indicate that the N-terminal domain of Dd PK2 is sufficient to influence cAMP levels and to provoke rapid development, whereas kinase activity seems to be required for the sporogenous phenotype. The association between elevated cAPK and Dd PK2 overexpression phenotype further indicates a role for cAPK in the formation of spores.  相似文献   

5.
Developmental mutants of Myxococcus xanthus have been previously described which appear to be defective in required cell-cell interactions. These mutants fall into four phenotypic classes, Asg, Bsg, Csg, and Dsg, each of which is unable to differentiate into spores but can be rescued by extracellular complementation by wild-type cells or by mutants of a different class. We report the identification of one of the loci in which mutations result in a Bsg phenotype. The cloned locus was contained on a 12-kilobase EcoRI fragment and then localized by subcloning and a combination of in vitro and transposon mutagenesis. All mutations in this locus behave as a single complementation group, which we designate bsgA (formerly ssbA). Each of the bsgA mutations results in a nonsporulating phenotype, which can be rescued by extracellular complementation. Furthermore, we report that the bsgA mutants have a distinctive interaction with wild-type cells when vegetatively growing, swarming colonies converge.  相似文献   

6.
Addition of cyclic AMP causes disorder in the multicellular stage of a number of species of cellular slime molds. In those which produce fruits with cellular stalks, the addition of cyclic AMP stimulates prestalk cells to differentiate into mature stalk cells. Prespore cells do not differentiate into spores under the influence of cyclic AMP, most degenerate and seem to die. I hypothesize that the normal course of differentiation from vegetative cells is one leading to spores, but that cyclic AMP can divert this course to one leading to the stalk cell. Dibutyryl cyclic AMP, cyclic GMP and cyclic AMP disrupt slugs of Polysphondylium pallidum, while species of Dictyostelium are disrupted by only cyclic AMP. The multicellular stage of P. violaceum is unaffected by high concentrations of exogenous cyclic nucleotides. Cell organization of Acytostelium ellipticum, a species with an acellular stalk, was disrupted by cyclic AMP, but no stalk cells were formed; only spores.  相似文献   

7.
A mutant which is capable of differentiating into spores and stalk cells without forming a cell aggregate was isolated from the cellular slime mould, Dictyostelium discoideum. The mutant stopped developing at various stages, before formation of mature fruits, and the cells differentiated into spores and stalk cells at whichever stage the development stopped. Unaggregated cells also differentiated into spores or stalk cells, depending on the culture conditions; differentiation into spores predominated in nutrient rich medium, while differentiation into stalk cells predominated in nutrient poor medium. The ratio of spores to stalk cells or of prespores to total cells in cell masses depended on the terminal structures formed; the ratio was unusually high or unusually low in a structure which stopped developing before papilla formation, while the ratio was normal in a structure formed after that stage. When isolated from a cell mass, prespore cells of the mutant did not dedifferentiate or resumed vegetative growth, indicating that they had lost plasticity of differentiation. The conditioned medium in which the mutant cells had grown was effective in inducing differentiation of wild type slug cells into spore-like or stalk-like cells.  相似文献   

8.
It is well known that interconversion between prestalk and prespore cells occurs in 3-dimensional (3–D) isolates of Dictyostelium. The present work was undertaken to examine whether or not the interconversion occurs even in monolayer sheets. The results suggested that in monolayer sheets of either prespore or prestalk cells, the interconversion does not occur. Furthermore, effects of cAMP were examined in relation to the formation or loss of prespore vesicles (PSVs). In monolayer sheets, prespore cells retain their PSVs in the presence of cAMP, though they lose them in its absence. In 3–D masses, however, cAMP induces the conversion into stalk cells, stimulating PSV loss. In the case of prestalk cells, cAMP induces the maturation of prestalk cells to stalk cells in 3–D masses, but it does not induce stalk differentiation in monolayer sheets.
8-Bromo cAMP stimulates the maturation of prespore and prestalk cells into spore and stalk cells, respectively. However, the vegetative and the aggregative cells remain amoeboid even in its presence. These observations suggest that 8-bromo cAMP stimulates the maturation rather than inducing prespore and prestalk differentiation.  相似文献   

9.
The effects of cAMP pulses on the capacity of 15 aggregateless mutants to differentiate and construct fruiting bodies are compared to those obtained when mutant cells are starved with wild-type amoebae. Mutant strains are classified into three main groups depending upon the degree to which their phenotypic defects can be corrected. These data extend studies published earlier [Darmon, M., Brachet, P., and Pereira da Silva, L. (1975). Chemotactic signals induce cell differentiation in Dictyostelium discoideum. Proc. Nat. Acad. Sci. USA72, 3163–3166; Pereira da Silva, L., Darmon, M., Brachet, P., Klein, C., and Barrand, P. (1975). Induction of cell differentiation by the chemotactic signal in Dictyostelium discoideum. In “Proceedings of the Tenth FEBS Meeting,” pp. 269–276]. (1) Only one mutant was unresponsive both to cAMP pulses and to the presence of wild-type amoebae and did not display any of the properties of differentiated cells. (2) Following treatment with cAMP pulses, 11 mutants developed certain properties of aggregation-competent amoebae. They increased their levels of cellular phosphodiesterase, showed an enhanced chemotactic sensitivity to cAMP, and established specific cell contacts. None of these amoebae could differentiate further. They did co-aggregate to some extent with wild-type cells, but failed to differentiate into spores. Rather, mutant cells were excluded from the pseudoplasmodium during the process of morphogenesis of the fruiting body. (3) In contrast, the aggregateless phenotype of three mutants was fully corrected by both cAMP pulses and the presence of wild-type cells. These findings are discussed on the basis of a relationship between the chemotactic signal and cell differentiation.  相似文献   

10.
Morrissey JH  Loomis WF 《Genetics》1981,99(2):183-196
Eight independently isolated mutants of Dictyostelium discoideum that differentiate exclusively into stalk cells make up one complementation group and carry single recessive mutations at the stalky locus, stkA, located on linkage group II. KY19, a previously described strain that differentiates into spores, but not stalk cells, was found to possess a recessive mutation defining the stalkless locus, stlA, located on linkage group VI. An analysis of the properties of these mutants, together with the phenotype of a haploid double mutant carrying stkA and stlA indicates that stlA results in poorly organized stalk tubes and incomplete stalk cell differentiation, while stkA causes all of the cells to differentiate into stalk cells, even when not enclosed in the stalk tube. The significance of these results is discussed in relation to current theories of pattern formation in D. discoideum.  相似文献   

11.
In Dictyostelium discoideum , the formation of multicellular masses is necessary for cell differentiation. However, the present study shows that amoebae of strain V12M2 efficiently differentiate to prespore or stalk cells under submerged incubation in a simple medium containing cAMP and salts without cell contact, only if the pH of the medium is maintained at acidic values; differentiation scarcely occurs in the neutral pH range. The optimum pH values for prespore and stalk cell differentiation are 5.1 and 4.5, respectively. In addition to the extracellular pH, Mg ions and the concentration of cAMP also affect the choice of the differentiation pathway. The time courses of differentiation of both cell types under optimum conditions are also presented.  相似文献   

12.
Dictyopyrones A and B (DpnA and B), whose function(s) is not known, were isolated from fruiting bodies of Dictyostelium discoideum. In the present study, to assess their function(s), we examined the effects of Dpns on in vitro cell differentiation in D. discoideum monolayer cultures with cAMP. Dpns at 1-20 microM promoted stalk cell formation to some extent in the wild-type strain V12M2. Although Dpns by themselves could hardly induce stalk cell formation in a differentiation-inducing factor (DIF)-deficient strain HM44, both of them dose-dependently promoted DIF-1-dependent stalk cell formation in the strain. In the sporogenous strain HM18, Dpns at 1-20 microM suppressed spore formation and promoted stalk cell formation in a dose-dependent manner. Analogs of Dpns were less effective in affecting cell differentiation in both HM44 and HM18 cells, indicating that the activity of Dpns should be chemical structure specific. It was also shown that DpnA at 2-20 microM dose-dependently suppressed spore formation induced with 8-bromo cAMP and promoted stalk cell formation in V12M2 cells. Interestingly, it was shown by the use of RT-PCR that DpnA at 10 microM slightly promoted both prespore- and prestalk-specific gene expressions in an early phase of V12M2 and HM18 in vitro differentiation. The present results suggest that Dpns may have functions (1) to promote both prespore and prestalk cell differentiation in an early stage of development and (2) to suppress spore formation and promote stalk cell formation in a later stage of development in D. discoideum.  相似文献   

13.
During culmination of Dictyostelium fruiting bodies, prespore and prestalk cells undergo terminal differentiation to form spores and a cellular stalk. A genomic fragment was isolated by random cloning that hybridizes to a 1.4-kb mRNA present during culmination. Cell type separations at culmination showed that the mRNA is present in prespore cells and spores, but not in prestalk or stalk cells. After genomic mapping, an additional 3 kb of DNA surrounding the original 1-kb fragment was cloned. The gene was sequenced and named Dd31 after the size of the predicted protein product in kilodaltons. Accumulation of Dd31 mRNA occurs immediately prior to sporulation. Addition of 20 mM 8-Br-cAMP to cells dissociated from Mexican hat stage culminants induced sporulation and the accumulation of Dd31 mRNA, while 20 mM cAMP did not. Dd31 mRNA does not accumulate in the homeotic mutant stalky in which prespore cells are converted to stalk cells rather than spores. Characterization of Dd31 extends the known temporal dependent sequence of molecular differentiations to sporulation.  相似文献   

14.
《The Journal of cell biology》1993,123(6):1453-1462
Folic acid and cAMP are chemoattractants in Dictyostelium discoideum, which bind to different surface receptors. The signal is transduced from the receptors via different G proteins into a common pathway which includes guanylyl cyclase and acto-myosin. To investigate this common pathway, ten mutants which do not react chemotactically to both cAMP and folic acid were isolated with a simple new chemotactic assay. Genetic analysis shows that one of these mutants (KI-10) was dominant; the other nine mutants were recessive, and comprise nine complementation groups. In wild-type cells, the chemoattractants activate adenylyl cyclase, phospholipase C, and guanylyl cyclase in a transient manner. In mutant cells the formation of cAMP and IP3 were generally normal, whereas the cGMP response was altered in most of the ten mutants. Particularly, mutant KI-8 has strongly reduced basal guanylyl cyclase activity; the enzyme is present in mutant KI-10, but can not be activated by cAMP or folic acid. The cGMP response of five other mutants is altered in either magnitude, dose dependency, or kinetics. These observations suggest that the second messenger cGMP plays a key role in chemotaxis in Dictyostelium.  相似文献   

15.
We have compared the pattern of enzyme expression in cyclic AMP-induced monolayer cultures of Dictyostelium discoideum with that found during normal development. We find that both the temporal and quantitative pattern of enzyme expression are initially similar in the two situations, although the developmental sequence is more protracted and terminal cell differentiation is delayed in the monolayer situation. We describe differentiation conditions that permit the expression of only one terminal phenotype, which may be useful for further biochemical studies. Enzyme accumulation patterns under these conditions indicate that UDP gal transferase is not required for stalk cell differentiation (i.e., it is a prespore enzyme). We have shown that, when cell monolayers are incubated with cAMP, the presence of a weak acid at low extracellular pH favors stalk-cell differentiation, while a weak base at high extracellular pH favors spore differentiation. Finally, we show that variations in the monovalent cation content of the buffer, or the addition of an ion transport inhibitor (scillaren), or an ionophore (valinomycin) all affect the ratio of stalk cells to spores. Taken together, these results suggest that intracellular H+ and/or other cations may play an important role in regulating differentiation of specific cell types in D. discoideum.  相似文献   

16.
Sporulation of Streptomyces griseus in submerged culture.   总被引:4,自引:9,他引:4       下载免费PDF全文
A wild-type strain of Streptomyces griseus forms spores both on solid media (aerial spores) and in liquid culture (submerged spores). Both spore types are highly resistant to sonication, but only aerial spores are resistant to lysozyme digestion. Electron micrographs suggest that lysozyme sensitivity may result from the thinner walls of the submerged spores. Studies of the life cycle indicate that neither streptomycin excretion nor extracellular protease activity is required for sporulation: the analysis of mutants, however, suggests that antibiotic production may be correlated with the ability to sporulate. A method was devised to induce the rapid sporulation of S. griseus in a submerged culture. This method, which depends on nutrient deprivation, was used to determine that either ammonia or phosphate starvation can trigger sporulation and that the enzyme glutamine synthetase may be useful as a sporulation marker after phosphate deprivation.  相似文献   

17.
Abstract Sporogenous mutants of Dictyostelium discoideum strain V12M2 were used to determine whether the intracellular levels of cyclic AMP or other second messengers regulate differentiation. Increasing external concentrations of cyclic AMP promoted spore formation. Caffeine and progesterone, which lower intracellular cyclic AMP levels by different mechanisms, blocked spore formation and favored stalk cell formation. In contrast, differentiation of both spore and stalk cells occurred normally in the presence of agents that disrupt calcium/calmodulin or protein kinase C-based second messenger systems. The data are in accord with the view that (1) intracellular cyclic AMP is essential for terminal differentiation of both cell types, and (2) higher levels are required for formation of spores than for stalk cells.  相似文献   

18.
DIF is an endogenous extracellular signal that may control differentiation of D. discoideum cells. It is a dialyzable, lipid-like factor that induces stalk cell formation among isolated amebae incubated in vitro with cAMP. To examine the consequences of DIF deprivation, we have isolated several mutant strains that are impaired in DIF accumulation, and whose inability to make stalk cells in vitro and during normal development on agar can be corrected by the addition of exogenous DIF. Little DIF is made by the mutants, and morphological development on agar stops after the cells have aggregated, but before a slug forms. In these DIF-deprived conditions, prespore cells can differentiate, but prestalk cells cannot.  相似文献   

19.
Myxococcus xanthus is a gram-negative bacterium that develops in response to starvation on a solid surface. The cells assemble into multicellular aggregates in which they differentiate from rod-shaped cells into spherical, environmentally resistant spores. Previously, we have shown that the induction of beta-lactamase is associated with starvation-independent sporulation in liquid culture (K. A. O'Connor and D. R. Zusman, Mol. Microbiol. 24:839-850, 1997). In this paper, we show that the chromosomally encoded beta-lactamase of M. xanthus is autogenously induced during development. The specific activity of the enzyme begins to increase during aggregation, before spores are detectable. The addition of inducers of beta-lactamase in M. xanthus, such as ampicillin, D-cycloserine, and phosphomycin, accelerates the onset of aggregation and sporulation in developing populations of cells. In addition, the exogenous induction of beta-lactamase allows M. xanthus to fruit on media containing concentrations of nutrients that are normally too high to support development. We propose that the induction of beta-lactamase is an integral step in the development of M. xanthus and that this induction is likely to play a role in aggregation and in the restructuring of peptidoglycan which occurs during the differentiation of spores. In support of this hypothesis, we show that exogenous induction of beta-lactamase can rescue aggregation and sporulation of certain mutants. Fruiting body spores from a rescued mutant are indistinguishable from wild-type fruiting body spores when examined by transmission electron microscopy. These results show that the signal transduction pathway leading to the induction of beta-lactamase plays an important role in aggregation and sporulation in M. xanthus.  相似文献   

20.
GNA-1 and GNA-2 are two G protein alpha subunits from the filamentous fungus Neurospora crassa. Loss of gna-1 leads to multiple phenotypes, while Deltagna-2 strains do not exhibit visible defects. However, Deltagna-1Deltagna-2 mutants are more affected in Deltagna-1 phenotypes. Here we report a biochemical investigation of the roles of GNA-1 and GNA-2 in cAMP metabolism. Assays of Mg2+ ATP-dependent adenylyl cyclase activity (+/-GppNHp) in extracts from submerged cultures indicated that Deltagna-2 strains were normal, whereas Deltagna-1 and Deltagna-1Deltagna-2 strains had only 10-15% the activity of the wild-type control. Levels of the Gbeta protein, GNB-1, were normal in Deltagna-1 strains, excluding altered GNB-1 production as a factor in loss of adenylyl cyclase activity. Steady-state cAMP levels in Deltagna-1 and Deltagna-1Deltagna-2 mutants were reduced relative to wild-type under conditions that result in morphological abnormalities (solid medium), while levels in submerged culture were normal. cAMP phosphodiesterase activities in submerged cultures of Deltagna-1 and/or Deltagna-2 strains were lower than in wild-type; the individual deletions were additive in decreasing activity. These results suggest that in submerged culture, N. crassa, like mammalian systems, possesses compensatory mechanisms that maintain cAMP at relatively constant levels. Furthermore, the finding that Mg2+ATP-dependent adenylyl cyclase activity in wild-type cell extracts could be inhibited using anti-GNA-1 IgG suggests that GNA-1 directly interacts with adenylyl cyclase in N. crassa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号