首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
The present study was an attempt to elucidate the relationship between stereoselective pharmacokinetics and protein binding of KE-298 and its active metabolites, deacetyl-KE-298 (M-1) and S-methyl-KE-298 (M-2). Metabolic chiral inversion was also investigated. The levels of unchanged KE-298 in plasma after oral administration of (+)-(S)-KE-298 to rats were lower than those of (−)-(R)-KE-298, whereas the levels of M-1 and M-2 after administration of (+)-(S)-KE-298 were higher than after (−)-(R)-KE-298. In vitro, rat plasma protein binding of (+)-(S)-KE-298 was lower than that of (−)-(R)-KE-298. In contrast, the binding of (+)-(S)-M-1 and (+)-(S)-M-2 was higher than that of (−)-(R)-M-1 and (−)-(R)-M-2. Displacement studies revealed that the (+)-(S) and (−)-(R)-enantiomers of KE-298 and their metabolites bound to the warfarin binding site on rat serum albumin. These results suggest that the stereoselective plasma levels in KE-298 and its metabolites were closely related to enantiomeric differences in protein binding, attributed to quantitative differences in binding to albumin rather than to the different binding sites. Unidirectional chiral inversion was detected after oral administration of either (−)-(R)-KE-298 or (−)-(R)-M-2 to rats both yielding (+)-(S)-M-2. Chirality 9:22–28, 1997 © 1997 Wiley-Liss, Inc.  相似文献   

2.
Drug metabolism can be a key determinant of drug toxicity. A nontoxic parent drug may be biotransformed by drug metabolizing enzymes to toxic metabolites (metabolic activation). Conversely, a toxic drug may be biotransformed to nontoxic metabolites (detoxification). The approaches to evaluate metabolism-based drug toxicity include the identification of toxic metabolites and the evaluation of toxicity in metabolically competent and metabolically compromised systems. A clear understanding of the role of drug metabolism in toxicity can aid the identification of risk factors that may potentiate drug toxicity, and may provide key information for the development of safe drugs.  相似文献   

3.
In this review article, the main recent advancements in the field of proteomics and metabolomics and their application in cancer research are described. In the second part of the review the main metabolic alterations observed in cancer cells are thoroughly dissected, especially those involving anabolic pathways and NADPH-generating pathways, which indirectly affect anabolic reactions, other than the maintenance of the redox poise. Alterations to mitochondrial pathways and thereby deriving oncometabolites are also detailed. The third section of the review is a discussion of how and to what extent (mutations to) tumor suppressors and oncogenes end up influencing cancer cell metabolism and cell fate, either promoting survival and proliferation or autophagy and apoptosis. In the last section of the review, an overview is provided of therapeutic strategies that make use of metabolic reprogramming approaches.  相似文献   

4.
The utility of primary human hepatocytes in the evaluation of drug-drug interactions is being investigated in our laboratories. Our initial approach was to investigate whether drug-drug interactions observed in humans in vivo could be reproduced in vitro using human hepatocytes. Two model drugs were studied: terfenadine and rifampin, representing compounds subjected to drug-drug interactions via inhibitory and induction mechanisms, respectively. Terfenadine was found to be metabolized by human hepatocytes to C-oxidation and N-dealkylation products as observed in humans in vivo. Metabolism by human hepatocytes was found to be inhibited by drugs which are known to be inhibitory in vivo, Ki values for the various inhibitors were derived from the in vitro metabolism data, resulting in the following ranking of inhibitory potency: For the inhibition of C-oxidation, ketoconazole > itraconazole > cyclosporin ~ troleandomycin > erythromycin > naringenin. For the inhibition of N-dealkylation, itraconazole ketoconazole > cyclosporin naringenin erythromycin troleandomycin. Rifampin induction of CYP3A, a known effect of rifampin in vivo, was also reproduced in primary human hepatocytes. Induction of CYP3A4, measured as testosterone 6-hydroxylation, was found to be dose-dependent, treatment duration-dependent, and reversible. The induction effect of rifampin was observed in hepatocytes isolated from all 7 human donors studied, with ages ranging from 1.7 to 78 years. To demonstrate that the rifampin-induction of testosterone 6-hydroxylation could be generalized to other CYP3A4 substrates, we evaluated the metabolism of another known substrate of CYP3A4, lidocaine. Dose-dependent induction of lidocaine metabolism by rifampin is observed. Our results suggest that primary human hepatocytes may be a useful experimental system for preclinical evaluation of drug-drug interaction potential during drug development, and as a tool to evaluate the mechanism of clinically observed drug-drug interactions.  相似文献   

5.
中国新药研究开发现状   总被引:12,自引:0,他引:12  
随着国民经济的持续发展和生活水平的不断提高,健康状况与生命质量已经成为我国新时期社会发展的重大课题。人口老龄化和农村医药市场的拓展为生物医药产业提供了前所未有的成长空间。经过多年的不懈努力,我国自主的创新药物研究体系已经初步形成,以提升国际竞争力为导向,医药产业正在实现由仿制为主向创新为主的历史性转变。  相似文献   

6.
The recent developments in the isolation, culturing, and cryopreservation of human hepatocytes, and the application of the cells in drug development are reviewed. Recent advances include the improvement of cryopreservation procedures to allow cell attachment, thereby extending the use of the cells to assays that requires prolong culturing such as enzyme induction studies. Applications of human hepatocytes in drug development include the evaluation of metabolic stability, metabolite profiling and identification, drug-drug interaction potential, and hepatotoxic potential. The use of intact human hepatocytes, because of the complete, undisrupted metabolic pathways and cofactors, allows the development of data more relevant to humans in vivo than tissue fractions such as human liver microsomes. Incorporation of key in vivo factors with the intact hepatocytes in vitro may help predictive human in vivo drug properties. For instance, evaluation of drug metabolism and drug-drug interactions with intact human hepatocytes in 100% human serum may eliminate the need to determine in vivo intracellular concentrations for the extrapolation of in vitro data to in vivo. Co-culturing of hepatocytes and nonhepatic primary cells from other organs in the integrated discrete multiple organ co-culture (IdMOC) may allow the evaluation of multiple organ interactions in drug metabolism and drug toxicity. In conclusion, human hepatocytes represent a critical experimental model for drug development, allowing early evaluation of human drug properties to guide the design and selection of drug candidates with a high probability of clinical success.  相似文献   

7.
Over the past decades, a number of drugs have been withdrawn or have required special labeling due to adverse effects observed post-marketing. Species differences in drug toxicity in preclinical safety tests and the lack of sensitive biomarkers and nonrepresentative patient population in clinical trials are probable reasons for the failures in predicting human drug toxicity. It is proposed that toxicology should evolve from an empirical practice to an investigative discipline. Accurate prediction of human drug toxicity requires resources and time to be spent in clearly defining key toxic pathways and corresponding risk factors, which hopefully, will be compensated by the benefits of a lower percentage of clinical failure due to toxicity and a decreased frequency of market withdrawal due to unacceptable adverse drug effects.  相似文献   

8.
NPY, PYY and PP constitute the so‐called NPY hormone family, which exert its biological functions in humans through YRs (Y1, Y2, Y4 and Y5). Systematic modulation of YR function became important as this multireceptor/multiligand system is known to mediate various essential physiological key functions and is involved in a variety of major human diseases such as epilepsy, obesity and cancer. As several YRs have been found to be overexpressed on different types of malignant tumors they emerge as promising target in modern drug development. Here, we summarize the current understanding of YRs function and the molecular mechanisms of ligand binding and trafficking. We further address recent advances in YR‐based drug design, the development of promising future drug candidates and novel approaches in YR‐targeted tumor diagnostics and therapy opportunities. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
It is generally recognized that drug discovery and development are very time and resources consuming processes. There is an ever growing effort to apply computational power to the combined chemical and biological space in order to streamline drug discovery, design, development and optimization. In biomedical arena, computer-aided or in silico design is being utilized to expedite and facilitate hit identification, hit-to-lead selection, optimize the absorption, distribution, metabolism, excretion and toxicity profile and avoid safety issues. Commonly used computational approaches include ligand-based drug design (pharmacophore, a 3D spatial arrangement of chemical features essential for biological activity), structure-based drug design (drug-target docking), and quantitative structure-activity and quantitative structure-property relationships. Regulatory agencies as well as pharmaceutical industry are actively involved in development of computational tools that will improve effectiveness and efficiency of drug discovery and development process, decrease use of animals, and increase predictability. It is expected that the power of CADDD will grow as the technology continues to evolve.  相似文献   

10.
Protein therapeutics represent a diverse array of biologics including antibodies, fusion proteins, and therapeutic replacement enzymes. Since their inception, they have revolutionized the treatment of a wide range of diseases including respiratory, vascular, autoimmune, inflammatory, infectious, and neurodegenerative diseases, as well as cancer. While in vivo pharmacokinetic, pharmacodynamic, and efficacy studies are routinely carried out for protein therapeutics, studies that identify key factors governing their absorption, distribution, metabolism, and excretion (ADME) properties have not been fully investigated. Thorough characterization and in-depth study of their ADME properties are critical in order to support drug discovery and development processes for the production of safer and more effective biotherapeutics. In this review, we discuss the main factors affecting the ADME characteristics of these large macromolecular therapies. We also give an overview of the current tools, technologies, and approaches available to investigate key factors that influence the ADME of recombinant biotherapeutic drugs, and demonstrate how ADME studies will facilitate their future development.  相似文献   

11.
12.
Keyword index     
《Journal of neurochemistry》2002,83(6):1543-1546
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号