首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isradipine (PN 200–110) is a highly potent calcium entry blocker with an asymmetrically substituted dihydropyridine ring (methyl- and isopropylester, respectively). The binding of the (+)-(S)-isradipine and (?)-(R)-isradipine to isolated human serum albumin (HSA, 30 μmol/l) and α1-acid glycoprotein (AAG, 10 μmol/l) has been studied in vitro over a wide range of isradipine concentrations (0.06–20 μmol/l) using high-performance liquid chromatography (HPLC). HPLC experiments revealed that both isradipine enantiomers were bound to one class of high-affinity binding sites on the AAG molecule (n(S) = 0.83 ± 0.05, Ka(S) = (1.33 ± 0.25) × 106 1/mol, n(R) = 0.85 ± 0.07, Ka(R) = (1.17 ± 0.44) × 107 l/mol). The (R)-enantiomer also exhibited an interaction with the secondary low-affinity binding sites (n′K′a (R) = (2.66 ± 0.65) × 104 l/mol). In contrast, the pharmacologically more potent (+)-(S)-enantiomer was more strongly bound to HSA than its optical antipode (n(S) = 1.07 ± 0.07, Ka(S) = (1.76 ± 0.26) × 105 l/mol, nKa(R) = (3.62 ± 0.06) × 104 l/mol). In general, the resulting binding characteristics of individual isradipine enantiomers showed stereoselectivity, but this was opposite for the two most important plasma binding proteins. The process of accumulation of isradipine by human platelets in the therapeutically relevant range (10–80 ng/ml) at 37°C was devoid of stereoselectivity. © 1995 Wiley-Liss, Inc.  相似文献   

2.
The reaction between glucose and methylene blue, catalyzed by glucose oxidase (GOD)was analysed calorimetrically. The amount of heat produced under saturating methylene blue concentrations ( > 10?2 mol/1)was measured with glucose concentration and time as parameters (kinetic procedure) Kinetic constants (pseudo one substrate kinetics) were derived from the experimental data: KM(glucose)= 1.18 × 10?3 mol/l and Vmax = 0.085 J/mg GOD min (3.89 · 10?6 mol/mg GOD min) Comparison of caloric with optical measurements gave an enthalpy of reaction of 22.52 kJ/mol. Considering the observed substrate inhibition, glucose determinations are possible up to glucose concentrations of 0.1 mol/l.  相似文献   

3.
Neutrophilic Fe(II) oxidizing microorganisms are found in many natural environments. It has been hypothesized that, at low oxygen concentrations, microbial iron oxidation is favored over abiotic oxidation. Here, we compare the kinetics of abiotic Fe(II) oxidation to oxidation in the presence of the bacterium Leptothrix cholodnii Appels isolated from a wetland sediment. Rates of Fe(II) oxidation were determined in batch experiments at 20°C, pH 7 and oxygen concentrations between 3 and 120 μmol/l. The reaction progress in experiments with and without cells exhibited two distinct phases. During the initial phase, the oxygen dependency of microbial Fe(II) oxidation followed a Michaelis-Menten rate expression (KM = 24.5 ± 10 μmol O2/l, vmax = 1.8 ± 0.2 μmol Fe(II)/(l min) for 108 cells/ml). In contrast, abiotic rates increased linearly with increasing oxygen concentrations. At similar oxygen concentrations, initial Fe(II) oxidation rates were faster in the experiments with bacteria. During the second phase, the accumulated iron oxides catalyzed further oxidative iron precipitation in both abiotic and microbial reaction systems. That is, abiotic oxidation also dominated the reaction progress in the presence of bacteria. In fact, in some experiments with bacteria, iron oxidation during the second phase proceeded slower than in the absence of bacteria, possibly due to an inhibitory effect of extracellular polymeric substances on the growth of Fe(III) oxides. Thus, our results suggest that the competitive advantage of microbial iron oxidation in low oxygen environments may be limited by the autocatalytic nature of abiotic Fe(III) oxide precipitation, unless the accumulation of Fe(III) oxides is prevented, for example, through a close coupling of Fe(II) oxidation and Fe(III) reduction.  相似文献   

4.
Growth rates of two clones of the freshwater planktonic diatom Asterionella formosa Hass. were measured under conditions in which external silicon concentrations controlled growth. Clone AfOH2 from Lake Ohrid, Yugoslavia, had a higher maximum growth rate (μmax= 1.11 doublings/day) and apparent half-saturation constant (Ksi] + Sio= 1.93 μM Si) than clone L262 from Lake Windermere, England. (μmax= 0.61 doublings/day; Ksi+ Sio= 1.09 μM Si). Klim, the silicon concentration at μ= 0.9 μmax, is 13.8 μM Si for clone AfOH2 and 6.5 μM Si for clone L262. These values agree well with published field observations showing A. formosa populations decreasing below 0.5 mg/l SiO2 (= 8.4 μM Si). Calculations of yield gave a range of 0.5–1.5 μM Si/106 cells for clone AfOH2 and 0.6–1.9 μM Si/106 cells for clone L262.  相似文献   

5.
The thiazol dye Thioflavin T (ThT), which is used to stain amyloid fibrils, was found to have strong inhibitory effects on both growth and conidiation of the deuteromycete Trichoderma viride at concentrations between 10–100 μg/ml (ca. 30–300 μmol/l). Thioflavin S (ThS), also known to stain amyloid fibrils, had no significant effect at these concentrations. Both stains yielded a fluorescence response, but their distributions were different. ThT was non-homogenously distributed throughout the cytoplasm, whereas ThS fluorescence was strongly bound to septal regions. The effect of ThT was studied on several model microorganisms. It exerted a strong inhibitory effect on Staphylococcus aureus (Gram-positive bacterium) (MIC=10 μmol/l), but the effect on Escherichia coli (Gram-negative bacterium) was one order of magnitude less pronounced. The effect on Candida albicans was also very strong (MIC=50 μmol/l). The dermatophytic fungus Microsporum gypseum and deuteromycete Alternaria alternata were less affected by ThT (MIC=250 μmol/l and >500 μmol/l, respectively). These results show that ThT could be a useful inhibitor of selected microorganisms, whereas ThS could be a useful agent for monitoring formation and maintenance of intrahyphal septa without inhibiting the growth of the microorganism.  相似文献   

6.
A literature review of data on nitrate uptake by phytoplankton suggests that nitrate levels above 20 μmol N·L?1 generally stimulated uptake rates in cultured unicellular algae and natural phytoplankton communities. This phenomenon indicates that phytoplankton cells acclimate to elevated nitrate levels by increasing their uptake capacity in a range of concentrations previously considered to be saturating. Cyanobacteria and flagellates were found to present a considerable capacity for acclimation, with low (0.1–2 μmol N·L?1) half‐saturation values (Ks) at low (5–20 μmol N·L?1) substrate levels and high (1–80 μmol N·L?1) Ks values at high (30–100 μmol N·L?1) substrate levels. However, some diatom genera (Rhizosolenia, Skeletonema, Thalassiosira) also appeared to possess a low affinity nitrate uptake system (Ks between 18 and 120 μmol N·L?1), which can help resolve the paradox of their presence in enriched seas. It follows that present models of nitrate uptake can severely underestimate the effects of high nitrate concentrations on phytoplankton dynamics and development. A more adequate approach would be to consider the possibility of multiphasic uptake involving several phase transitions as nitrate concentrations increased. Because it is a nonlinear phenomenon featuring strong thresholds, this effect appears to override that of other variables, such as irradiance, temperature, and cell size. Within the present context of eutrophication and for a range of concentrations that is becoming more and more ecologically relevant, equations are tentatively presented as a first approach to estimate Ks from ambient nitrate concentrations.  相似文献   

7.
In order to improve calibration of firefly luciferase signals obtained by injecting the enzyme into single, isolated heart and liver cells we have investigated why the luminescence from cells is greatly depressed compared with in vitro (in mammalian ionic milieu) and why the decay of the intracellular signal is remarkably slow. We have shown that inorganic pyrophosphate greatly depresses the signal in vitro and that micromolar concentrations of inoragnic pyrophosphate, comparable with that in cytoplasm, reverse this inhibition and stabilize the signal, eliminating its decay. Higher concentrations of pyrophosphate depress the signal by inhibiting ATP-binding to luciferase. Luciferse-injected cells exposed to extracellular luciferin concentrations above about 100 μmol/1 (corresponding to a cytoplasmic level of c. 5–10 μmol/1 because of a transplasmalemmal gradient) show a gradual, irreversible loss of signal. We attribute this phenomenon (which is not seen in vitro) to the gradual accumlation of a luminescently inactive, irreversible, luciferase-oxyluciferin complex. At low luciferin levels this complex is prevented from forming by cytoplasmic pyrophosphate. Above c. 100μmol/1 extracellular luciferin, the pyrophosphate level in the cytoplasm fails to fully prevent the complex forming. In vitro this phenomenon does not occur because the luciferase concentrations and hence oxyluciferin levels are orders of magnitude lower than in cells injected with concentrated luciferase solutions, which have a cytoplasmic luciferase concentration of approximately 2-4 μmol/1.  相似文献   

8.
Biometric parameters, glycemia and activity levels of plasma neutral aminopeptidase (APN) and dipeptidyl peptidase IV (DPPIV) were measured in monosodium glutamate obese and food‐deprived rats (MSG‐FD), to analyze the involvement of these enzymes in such situations. Plasma APN was distinguished as sensitive (PSA) (Km = 7.8 × 10?5 mol/l) and predominantly insensitive (APM) (Km = 21.6 × 10?5 mol/l) to puromycin, whereas DPPIV was sensitive (DPPIV‐DS) (Km = 0.24 × 10?5 mol/l) and predominantly insensitive (DPPIV‐DI) (Km = 7.04 × 10?5 mol/l) to diprotin A. Although unchanged in the MSG and food‐deprived animals, APM activity levels were closely correlated with body mass, Lee index, and mass of retroperitoneal fat pad in the food deprived, but not in the MSG animals. DPPIV‐DI activity levels decreased by 33% and were correlated with body mass, Lee index, and mass of periepididymal fat pad in the food‐deprived MSG rats. These data suggest that APM and DPPIV‐DI are respectively related to the downregulation of somatostatin in food‐deprived rats, and to the recovery of energy balance in MSG obese rats during food deprivation.  相似文献   

9.
10.
Ghrelin is thought to directly exert a protective effect on the cardiovascular system, specifically by promoting vascular endothelial cell function. Our study demonstrates the ability of ghrelin to promote rat CMEC (cardiac microvascular endothelial cell) proliferation, migration and NO (nitric oxide) secretion. CMECs were isolated from left ventricle of adult male Sprague—Dawley rat by enzyme digestion and maintained in endothelial cell medium. Dil‐ac‐LDL (1,1′‐dioctadecyl‐3,3,3′,3′‐ tetramethylindocarbocyanine‐labelled acetylated low‐density lipoprotein) intake assays were used to identify CMECs. Cells were split into five groups and treated with varying concentrations of ghrelin as follows: one control non‐treated group; three ghrelin dosage groups (1×10?9, 1×10?8, 1×10?7 mol/l) and one ghrelin+PI3K inhibitor group (1×10?7 mol/l ghrelin+20 μmol/l LY294002). After 24 h treatment, cell proliferation capability was measured by MTT [3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl‐2H‐tetrazolium bromide] assay and Western blot for PCNA (proliferating cell nuclear antigen) protein expression. Migration of CMECs was detected by transwell assays, and NO secretion of CMECs was measured via nitrate reduction. Protein expression of AKT and phosphorylated AKT in CMECs was measured by Western blot after exposure to various concentrations of ghrelin and the PI3K inhibitor LY294002. Our results indicate that ghrelin significantly enhanced cell growth at concentrations of 10?8 mol/l (0.271±0.041 compared with 0.199±0.021, P=0.03) and 10?7 mol/l (0.296±0.039 compared with 0.199±0.021, P<0.01). However, addition of the PI3K/AKT inhibitor LY294002 inhibited the ghrelin‐mediated enhancement in cell proliferation (0.227±0.042 compared with 0.199±0.021, P=0.15). At a concentration between 10?8 and 10?7 mol/l, ghrelin caused a significant increase in the number of migrated cells compared with the control group (126±9 compared with 98±7, P=0.02; 142±6 compared with 98±7, P<0.01), whereas no such change could be observed in the presence of 20 μmol/l of the PI3K/Akt inhibitor LY294002 (103±7 compared with 98±7, P=0.32). Ghrelin treatment significantly enhanced NO production in a dose‐dependent fashion compared with the untreated control group [(39.93±2.12) μmol/l compared with (30.27±2.71) μmol/l, P=0.02; (56.80±1.98) μmol/l compared with (30.27±2.71) μmol/l, P<0.01]. However, pretreatment with 20 μmol/l LY294002 inhibited the ghrelin‐stimulated increase in NO secretion [(28.97±1.64) μmol/l compared with (30.27±2.71) μmol/l, P=0.37]. In summary, we have found that ghrelin treatment promotes the proliferation, migration and NO secretion of CMECs through activation of PI3K/AKT signalling pathway.  相似文献   

11.
Glucose dehydrogenase (E.C. 1.1.1.47) from B. megaterium M 1286 was immobilized together with mutarotase (E.C. 5.1.3.3) on several organic carriers and by different methods. The storage stability of the enzyme at pH-values > 6 is slightly improved by immobilization and the pH-optimum is shifted from 8.3 to 8.0. Kinetic constants of the immobilized enzyme are: KM(NAD+) = 5.36 × 10?4 mol/l KM(glucose) = 3.76 · 10?2 mol/l and Vmax = 5.54 · 10?5 mol/(l min g carrier) for the most active preparation (2.16 mg enzyme/g carrier). In reactor experiments the immobilized glucose dehydrogenase was used with glucose to regenerate NADPH in NADPH-dependent iron-III-protoporphyrin-IX-imidazole catalyzed hydroxylation and demethylation of model substrates of cytochrome P-450. The advantages of the coupling of both reactions with cofactor recycling are shown and discussed.  相似文献   

12.
Detection of hydA genes of Clostridia spp. using degenerative and species specific primers for C. butyricum were optimized by the addition of bovine serum albumin (BSA) to polymerase chain reaction (PCR) and quantitative PCR (qPCR) reactions. BSA concentrations ranging from 100 to 400 ng/μl were examined using pure cultures and a variety of environmental samples as test targets. A BSA concentration of 100 ng/μl, which is lower than previously reported in the literature, was found to be most effective in improving the detection limit. The brightness of amplicons with 100 ng/μl BSA increased in ethidium bromide-treated gels, the minimum detection limit with BSA was at least one log greater, and cycle threshold (C T) values were lower than without BSA in qPCR indicating improved detection of target deoxyribonucleic acid for most samples tested. Although amplicon visualization was improved at BSA concentrations greater than or equal to 100 ng/μl, gene copy numbers detected by qPCR were less, CT values were increased, and T m values were altered. SYBR Green dissociation curves of qPCR products of DNA from pure culture or sludge samples showed that BSA at 100 ng/μl reduced the variability of peak areas and T m values.  相似文献   

13.
The binding interactions between megestrol acetate (MA) and bovine serum albumin (BSA) under simulated physiological conditions (pH 7.4) were investigated by fluorescence spectroscopy, circular dichroism and molecular modeling. The results revealed that the intrinsic fluorescence of BSA was quenched by MA due to formation of the MA–BSA complex, which was rationalized in terms of a static quenching procedure. The binding constant (Kb) and number of binding sites (n) for MA binding to BSA were 2.8 × 105 L/mol at 310 K and about 1 respectively. However, the binding of MA with BSA was a spontaneous process due to the negative ∆G0 in the binding process. The enthalpy change (∆H0) and entropy change (∆S0) were – 124.0 kJ/mol and –295.6 J/mol per K, respectively, indicating that the major interaction forces in the binding process of MA with BSA were van der Waals forces and hydrogen bonding. Based on the results of spectroscopic and molecular docking experiments, it can be deduced that MA inserts into the hydrophobic pocket located in subdomain IIIA (site II) of BSA. The binding of MA to BSA leads to a slight change in conformation of BSA but the BSA retained its secondary structure, while conformation of the MA has significant change after forming MA–BSA complex, suggesting that flexibility of the MA molecule supports the binding interaction of BSA with MA. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The interaction between 3‐spiro‐2′‐pyrrolidine‐3′‐spiro‐3″‐piperidine‐2,3″‐dione (PPD) and bovine serum albumin (BSA) in aqueous solution was studied using fluorescence and UV–vis spectroscopy. Fluorescence emission data revealed that BSA (1.00 × 10‐5 mol/L) fluorescence was statically quenched by PPD at various concentrations, which implies that a PPD–BSA complex was formed. The binding constant (KA), the number of binding sites (n) and the specific binding site of the PPD with BSA were determined. Energy‐transfer efficiency parameters were determined and the mechanism of the interaction discussed. The thermodynamic parameters, ΔG, ΔH and ΔS, were obtained according to van't Hoff's equation, showing the involvement of hydrophobic forces in these interactions. The effect of PPD acting on the BSA conformation was detected by synchronous fluorescence. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The pancreatic hormone glucagon hyperpolarizes the liver cell membrane. In the present study, we investigated the cellular signalling pathway of glucagon-induced hyperpolarization of liver cells by using the conventional microelectrode method. The membrane potential was recorded in superficial liver cells of superfused mouse liver slices. In the presence of the K+ channel blockers tetraethylammonium (TEA, 1 mmol/l) and Ba2+ (BaCl2, 5 mmol/l) and the blocker of the Na+/K+ ATPase, ouabain (1 mmol/l), no glucagon-induced hyperpolarization was observed confirming previous findings. The hyperpolarizing effect of glucagon was abolished by the leukotriene B4 receptor antagonist CP 195543 (0.1 mmol/l) and the purinergic receptor antagonist PPADS (5 μmol/l). ATPγS (10 μmol/l), a non-hydrolyzable ATP analogue, induced a hyperpolarization of the liver cell membrane similar to glucagon. U 73122 (1 μmol/l), a blocker of phospholipase C, prevented both the glucagon- and ATPγS-induced hyperpolarization. These findings suggest that glucagon affects the hepatic membrane potential partly by inducing the formation and release of leukotrienes and release of ATP acting on purinergic receptors of the liver cell membrane.  相似文献   

16.
Summary Spores of Fusarium flocciferum were inserted in porous celite beads. The effects of bead size, adsorption time course, washing cycle and spore concentration on spore loading were investigated. Cell loadings up to 50% (dry weight/beads) were obtained. The degradation of phenol using adsorbed cells was studied in batch experiments. The immobilized cell system was shown to efficiently degrade high concentrations of the substrate (up to 2.0 g/l) and to remain active for more than 2 motths. The oxygen uptake rate of free and immobilized cells was determined at various concentrations of phenol. The kinetic constants K s=85 mg/l, K i=345 mg/l and SMI=170 mg/l were estimated from the experimental data by linearization of the Haldane function for the free cells. The uptake rates exhibited by the confined cells were lower (30%) than those obtained for free cells and no significant differences were found for phenol concentrations between 150 and 1200 mg/l.  相似文献   

17.
Florida's red tide organism, Gymnodinium breve, utilized exogenous glucose in the light for the synthesis of cellular components. Glucose was not taken up in the dark. Kinetic parameters for glucose uptake include a KFD of 11 μM and a Vmax of 1 × 10?10 mol of glucose taken up/mg cellular protein/hr. Glucose uptake was competitively inhibited by phloridzin (Ki = 40 μM), mannose (Ki = 12O μM), and 2-deoxy-d-glucose (Ki = 190 μM) and non-competitively inhibited by galactose (Ki = 125 μM). Kinetics and inhibition of glucose uptake are consistent with a facilitated diffusion transport system.  相似文献   

18.
In this paper we studied the conditions for the production of β-glucosidase from T. reesei QM9414 in batch cultures using milled and sieved wheat straw as sole carbon source. High β-glucosidase production in the presence of wheat straw, a more realistic substrate than commercial cellulose, was obtained. The influence of particle size of wheat straw on β-glucosidase production in cell-free, cell and cell-wall extracts was studied. The particle size of wheat straw notably influenced enzyme production in cell and extramycelial extracts but it was less important with respect to the cell wall bound enzyme. β-glucosidase production was studied along of the fermentation. The results suggest a close relation between β-glucosidase from cell extract and extramycelial broth; geneticin levels of inhibition of β-glucosidase biosynthesis in both fractions were similar, a fact that suggests a common origin for the enzyme. Kinetic parameters for β-glucosidase from cell free and cell extracts were Vmax = 0.28 μmol/min/mg, KM = 0.91 mM and Vmax = 0.095 μmol/min/mg, KM = 0.39 mM respectively. Kinetic parameters for β-glucosidase from cell-wall could not be calculated because experimental data did not fit the different monosubstrate equations.  相似文献   

19.
1. The filtration rate (volume of water completely cleared of collodial carbon per unit time) by control oysters is 36.60 ml/g hr ± 7.68 (sd).2. Filtration rates decrease with increasing concentrations of Cd2+ and Zn2+.3. In 8–16 mg/l Cu2+, filtration rates are significantly higher than the control, but in Cu2+ concentrations above 32 mg/l, filtration rates are lower than controls.4. Influx of 14C-glycine is characterized by Michaelis-Menten kinetics with Jmax and Kt values of 1.85 ± 0.097 μmol/g hr and 33.7 ± 4.6 μM respectively.5. The uptake rate of glycine from 1 μM solution is 37.79 μmol/g hr.6. In order of degree of inhibition of glycine uptake, Cu2+ > Cd2+ > Zn2+.7. In 128 mg/l Cu2+, glycine uptake rate is reduced to 3.96 nmol/g hr or 10.5% of control.8. The rate of glycine uptake by filter feeding bivalves is dependent on rate of water pumping rate.9. The volume specific glycine transport (amount of glycine transported/unit volume of seawater completely cleared of colloidal carbon) by control oysters in 1 μM glycine concentrations is 1.03 μmol/l.10. The volume specific glycine transport remains constant in increasing Zn2+ concentrations, and declines in increasing Cu2+ concentrations, suggesting differential effects of the metals on particle filtration and the epithelial amino acid carriers.11. The apparent volume specific glycine transport increases to 2.14 μmol/l in 128 mg/l Cd2+. This volume specific transport greater than the glycine concentration in the medium suggests that there may be uptake of cadmium complexed glycine by the oysters.  相似文献   

20.
Kinetic behavior of penicillin acylase immobilized on acrylic carrier   总被引:1,自引:0,他引:1  
The usefulness of Lilly's kinetic equation to describe penicillin G hydrolysis performed by immobilized penicillin acylase onto the acrylic carrier has been shown. Based on the experimental results characteristic kinetic constants have been estimated. The effect of noncompetitive inhibition of 6-amino penicillanic acid has not been found. Five components of reaction resistance have been defined. These components were also estimated for the reaction of the native enzyme as well as the Boehringer preparation.List of Symbols C E g/m3 enzyme concentration - C P,C Q mol/m3 product concentrations - C S mol/m3 substrate concentration - C SO mol/m3 initial substrate concentration - K A mol/m3 constant which defines the affinity of a substrate to the enzyme - K iS mol/m3 substrate inhibitory constant - K iP mol/m3 PhAA inhibitory constant - K iQ mol/m3 6-APA inhibitory constant - k 3 mol/g/min constant rate of dissociation of the active complex - R(1) concentrational component of reaction resistance - R(2) resistance component derived from substrate affinity - R(3) resistance component due to the inhibition of the enzyme by substrate - R(4) resistance component due to the inhibition of the enzyme by PhAA - R(5) resistance component due to inhibition of the enzyme by 6-APA - r = dCs/dt mol/m3 min rate of reaction - t min reaction time - (i) relative resistance of reaction  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号