首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(R,S)-trans-8-Hydroxy-2-[N-n-propyl-N-(3′-iodo-2′-propenyl)amino]tetralin 7 , a new radioiodinated ligand based on 8-OH-DPAT, was reported as a potential ligand for 5-HT1A receptors. The optically active (+)-(R)- and (?)-(S)- 7 were prepared to investigate the stereoselectivity of (R,S)- 7 . Racemic intermediate 8-methoxy-2-N-n-propyltetralin was reacted with the acyl chloride of (?)-(R)-O-methylmandelic acid to form a mixture of (S,R)- and (R,R)-diastereoisomers, which were separated by flash column chromatography. After removing the N-acyl group from the diastereoisomers, the desired (+)-(R)-or (?)-(S)- 7 was obtained by adding an N-iodopropenyl group. In vitro homogenate binding studies showed the stereoselectivity of this new compound for 5-HT1A receptors. (+)-(R)- 7 isomer displayed 100-fold higher affinity than the (?)-(S)- 7 isomer. Biochemical study indicated that (+)-(R)- 7 potently inhibited forskolin-stimulated adenylyl cyclase activity in hippocampal membranes (Emax and EC50 were 24.5% and 5.4 nM, respectively), while (?)-(S)- 7 showed no effect at 1 μM. The radioiodinated (+)-(R)- and (?)-(S)-[125I] 7 were confirmed by coelution with the resolved unlabeled compound on HPLC (reverse phase column PRP-1, acetonitrile/pH 7.0 buffer, 80/20). The active isomer, (+)-(R)-[125I] 7 , displayed high binding affinity to 5-HT1A receptors (Kd = 0.09 ± 0.02 nM). In contrast, the (?)-(S)- 7 isomer displayed a significantly lower affinity to the 5-HT1A receptor (Kd > 10 nM). Thus, (+)-(R)-[125I]trans-8-OH-PIPAT, (+)-(R)- 7 , an iodinated stereoselective 5-HT1A receptor agonist, is potentially useful for study of in vivo and in vitro function and pharmacology of 5-HT1A receptors in the central nervous system. © 1995 Wiley-Liss, Inc.  相似文献   

2.
Chemoselective reduction of one isomer of the 1-menthylester of 1,3-oxathiolan-5-one-2-carboxylic acid produces a mixture of four lactol diastereomers from which the title compound was isolated after acylation. The isomeric purity and absolute stereochemistry were determined by spectroscopic methods, chiral HPLC techniques, and conversion to (?)-2′-deoxy-3′-thiacytidine (Lamivudine, 3TCTM). © 1994 Wiley-Liss, Inc.  相似文献   

3.
Racemic 5-methoxy-2-methyl-2-dipropylaminotetralin ( 3 ) has been prepared by a short synthetic route, in which the N,N-dipropyliminium perchlorate of 5-methoxy-2-tetralone ( 4 ) is a key intermediate. Racemic 3 was resolved by crystallization of the corresponding diastereomeric di-p-toluoyltartrates. The enantiomeric excess (%ee) of the phenolic derivatives of (+)-(R)- and (?)-(S)-3 [(+)-(R)- and (?)-(S)-2] was determined by 1HNMR spectroscopic analysis of the corresponding diastereomeric (?)-(R)-1,1′-binaphthyl-2,2′-diylphosphoric acid salts utilizing 13C satellites. X-ray crystallography established the absolute configuration of (?)-(S)-2 · HCl. The enantiomers of 2 were tested for hippocampal output of 5-hydroxytryptamine, 5-hydroxyindoleacetic acid, and dihydroxyphenylacetic acid in rats by use of in vivo microdialysis. The (?)-(S)-enantiomer appeared to affect 5-HT-turnover, whereas (+)-(R)- 2 was inactive. Results obtained provide support for the previously reported hypothesis that the inactivity of (?)-(S)- 2 at central DA receptors is caused by the steric bulk of the C(2)-methyl group. This makes it possible to define a “DA D2 receptor essential volume.” © 1993 Wiley-Liss, Inc.  相似文献   

4.
Optically active enamines of 2-(2′-pyrido)acetophenone or 2-(2′-quinolino)acetophenone with (R)-1-phenylethylamine, (R)-1-(1-naphthyl)ethylamine, (R)-cyclohexylethylamine, and (R)-phenylglycinol were prepared and their copper(I) complexes used in the enantioselective cyclopropanation of styrene with ethyl- and menthyldiazoacetate. Enantioselectivities of up to 42% enantiomeric excess were obtained for cis/trans 2-phenylcyclopropan-1-carboxylic acid ethyl esters, as determined by gas-liquid chromatography (GLC) on chiral chromatographic columns. © 1995 Wiley-Liss, Inc.  相似文献   

5.
Evidence is accumulating that 7-chloro-4-[4-diethylamino-1-methylbutyl] amino quinoline (chloroquine) displays considerable stereoselectivity in its metabolism, pharmacokinetics, macromolecular interactions, and biological activity. The availability of the enantiomers has been hampered by the failure of direct methods of resolution. We now describe a successful resolution in which the atropisomeric 1,1′-binaphthyl-2,2′-diyl hydrogen phosphate is used in a 1:1 ratio to form stereoselectively the 2:1 diastereomeric salt from one enantiomer of the base, leaving the other in solution. By this means both enantiomers of chloroquine may be readily isolated. © 1993 Wiley-Liss, Inc.  相似文献   

6.
Optically active 3,3′‐dimethyl‐2,2′‐diamino‐1,1′‐binaphthyl (DM‐DABN) and 3,3′‐dimethyl‐2‐amino‐2′‐hydroxybinaphthyl (DM‐NOBIN) derivatives were synthesized by Cu‐(?)‐sparteine complex‐catalyzed enantioselective homo‐ and hetero‐coupling of 2‐naphthylamine, respectively. The difference in enantioselectivity was observed by changing the concentration of oxygen. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
HPLC and 1H-NMR methods for the quantitation of the (R)-enantiomer in (?)-(S)-timolol maleate were developed and validated. The HPLC method requires a 25 cm × 4.6 mm 5 μm Chiracel OD-H (cellulose tris-3,5-dimethylphenylcarbamate) column, a mobile phase of 0.2% (v/v) diethylamine and 4% (v/v) isopropanol in hexane at a flow rate of 1 ml/min and UV detection at 297 nm. A system suitability test was devised to verify the separation of the (R)- and (S)-enantiomers of timolol from other drug-related impurities. The NMR method requires the use of a high-field NMR spectrometer (>360 MHz) and a chiral solvating agent, (?)-(R)-2,2,2-trifluoro-1-(9-anthrylethanol) (R-TFAE). The limits of quantitation were 0.05% and 0.2% (m/m) for HPLC and NMR, respectively. The methods were applied to the determination of the (R)-enantiomer in eight lots of raw material. The results for the two methods were in very good agreement, with results ranging from 0.1 to 4.1% (m/m) by HPLC and none detected to 4.3% (m/m) by NMR. The USP method for specific rotation was found to be unsuitable for detecting the presence of low levels of the (R)-enantiomer in (?)-(S)-timolol maleate. © 1994 Wiley-Liss, Inc.  相似文献   

8.
Two diastereoisomeric pairs of bis‐oxazolines, provided with a stereogenic center at carbon 4 and based on the 3,3′‐bithiophene atropisomeric scaffold, were synthesized and structurally characterized. They differ in the substituents at positions 2 and 5 of the thiophene rings, which are functionalized with methyl (1) or phenyl (2) groups, respectively. In vibrational circular dichroism (VCD) spectra, recorded in CCl4 solutions, it is possible to distinctly recognize the characteristic features of axial and central stereogenic elements. In tandem with Density Functional Theory (DFT) calculations, the absolute configuration (AC) of the diastereoisomers was safely established. In this case, VCD was shown to be superior to ECD (electronic circular dichroism) in the assignment of AC. The normal modes, evaluated from DFT calculations, show that the VCD signals in correspondence with the stereogenic axis of the bithiophene unit are different for 1 and 2. The VCD spectra of a molecular analog of 1, the (S)‐2,2′,5,5′‐tetramethyl‐4,4′‐bis‐(diphenylphosphino)‐3,3′‐bithiophene oxide (3), characterized by the same 3,3′‐bithiophene scaffold, but devoid of stereogenic centers, exhibits signals similar to those observed in the case of diastereoisomer (aS,R,R)‐1a, associated with almost identical normal modes. Chirality 28:686–695, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

9.
(±)-(2Z,4E)-α-Ionylideneacetic acid (2) was enantioselectively oxidized to (?)-(l′S)-(2Z,4E)-4′-hydroxy-α-ionylideneacetic acid (3), (+)-(1′R)-(2Z,4E)-4′-oxo-α-ionylideneacetic acid (4) and (+)-abscisic acid (ABA) (1) by Cercospora cruenta IFO 6164, which can produce (+)-ABA and (+)-4′-oxo-α-acid 4. This metabolism was confirmed by the incorporation of radioactivity from (±)-(2-14C)-(2Z,4E)-α-acid 2 into three metabolites. (?)-4′-Hydroxy-α-acid 3 was a diastereoisomeric mixture consisting of major 1′,4′-trance-4′-hydroxy-α-acid 3a and minor 1′,4′-cis-4′-hydroxy-α-acid 3b. These structures, 3a and 3b, were confirmed by 13C-NMR and 1H-NMR analysis. Also, the enantioselectivity of the microbial oxidation was reexamined by using optically pure α-acid (+)-2 and (?)-2, as the substrates.  相似文献   

10.
In order to obtain information about the conformational characteristics at the nearestneighbor level in the 2′-O-methylated region of t-RNA, as well as in the bizarre 5′-terminus of eucaryotic mRNA, a detailed nuclear magnetic resonance study of 2′-O-methyl-cytidylyl-(3′ → 5′)-cytidine (CmpC) was conducted. Proton spectra were recorded at 270 MHz in the Fourier mode in D2O solutions, 0.01M, pD 7.3 in the temperature range 5–80°C. Complete accurate sets of nmr parameters were derived for each of the nucleotidyl units by a combination of homo-nuclear decouplings and simulation iteration methods. The data were translated into conformational parameters using procedures developed in earlier studies from these laboratories. It is shown that the ribofuranose ring exists at a 2E ? 3E equilibrium with clear preference [(75–80)%] for the 3E mode. The C(4′)-C(5′) and C(5′)-O(5′) bonds form a stable conformational network with outspoken preference for conformers in which Ψ1, Ψ2 ? 60° and ?2 ? 180°. The orientation of the 3′-phosphate and 2′-O-methyl groups is such that ?1′ ? 210° and ?″ ? 60°. The phosphodiester bonds are flexible and shift trends for base, H(1′), and H(5″) suggest the existence of a conformational blend of right-handed stack (g?g?), left-handed stack (g+g+), and unstacked arrays (tg? and tg+). Elevation of temperature perturbs the 2E ? 3E equilibrium accompanied with modest depopulation of ψ1, ψ2 ? 60° and ?2 ? 180° conformers. The major effect of elevation of temperature is in the increase of unstacked arrays at the expense of g?g? and g+g+ conformers. The shift trend of Cmp-H(3′) with temperature shows that torsional variation about O(3′)-P is facilitated by increase in temperature and the preferred rotamer about O(3′)-P in the unstacked form is t (ω1′ = 180°). A detailed comparison of the aqueous solution conformations of CpC and CmpC reveals that 2′-O-methylation causes: (i) a reduction in the magnitude of χ1; (ii) an increase in the population of 3E pucker at the 3′-nucleotidyl unit; and (iii) modest perturbations in the O(3′)-P and P-O(5′) bond conformations. Comparison of the aqueous solution conformations of AmpA and CmpC makes clear that the conformational properties of pyrimidine-pyrimidine and purine-purine dimers which carry a 2′-O-methylated 3′-nucleotidyl unit are significantly different.  相似文献   

11.
Proton nmr spectroscopy is used to measure the deuterium exchange rates of C8 protons in individual purines of the dodecamer 5′-d(CGCGAATTCGCG)-3′ and their temperature dependence. In perfect agreement with results from tritium labeling and laser Raman spectroscopy, we find that the DNA secondary structure retards the rates of purine C8H exchange. The largest effects are observed for the C8 protons of adenines whose rates of exchange at 40°C are 3-to 4-fold lower than that in 5′-adenosine monophosphate. Moreover, the retardation of exchange at the central adenine is greater than that at its 5′-neighbor. For the guanines, the exchange rates are up to 2-fold lower than that in 5′-guanosine monophosphate, and the largest retardation is observed for the bases at positions 10 and 12. A dependence on base sequence is also observed for the activation energy for exchange. The activation energy is largest for the adenines and its value is 4 kcal/mol higher than that in 5′-adenosine monophosphate. The lowest activation energy is observed for the guanine in position 4 and the value is the same as in 5′-guanosine monophosphate. These results demonstrate the sensitivity of the purine C8H exchange kinetics to sequence-dependent conformational features of B-DNA in solution state. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
Delivering biomolecules, such as antibodies, proteins, and peptides, to the cytosol is an important and challenging aspect of drug development and chemical biology. Polyarginine—a well‐known cell‐penetrating peptide (CPP)—is capable of exploiting its positive charge and guanidium groups to carry a fused cargo into the cytosol. However, the precise mechanism by which this occurs remains ambiguous. In the present study, we established a new method of quantitatively assessing cell penetration. The method involves inducing cell death by using a polyarginine (R8) to deliver a peptide—ie, mitochondrial targeting domain (MTD)—to the cytosol. We found that 4,4′‐diisothiocyanatostilbene‐2,2′‐di‐sulfonate (DIDS)—an anion channel blocker—inhibited the ability of octa‐arginine (R8)–fused MTD to penetrate cells. Other anion channel blockers did not inhibit the penetration of peptides fused with R8. Comparison of DIDS with other structurally similar chemicals revealed that the isothiocyanate group of DIDS may be primarily responsible for the inhibitory effect than its stilbene di‐sulfonate backbone. These results imply that the inhibitory effect of DIDS may not be derived from the interaction between stilbene di‐sulfonate and the anion channels, but from the interaction between the isothiocyanate groups and the cell membrane. Our new MTD method enables the quantitative assessment of cell penetration. Moreover, further studies on the inhibition of CPPs by DIDS may help clarify the mechanism by which penetration occurs and facilitate the design of new penetrative biomolecules.  相似文献   

13.
Turnover of mRNA in the cytoplasm of human cells is thought to be redundantly conducted by the monomeric 5′‐3′ exoribonuclease hXRN1 and the 3′‐5′ exoribonucleolytic RNA exosome complex. However, in addition to the exosome‐associated 3′‐5′ exonucleases hDIS3 and hDIS3L, the human genome encodes another RNase II/R domain protein—hDIS3L2. Here, we show that hDIS3L2 is an exosome‐independent cytoplasmic mRNA 3′‐5′ exonuclease, which exhibits processive activity on structured RNA substrates in vitro. hDIS3L2 associates with hXRN1 in an RNA‐dependent manner and can, like hXRN1, be found on polysomes. The impact of hDIS3L2 on cytoplasmic RNA metabolism is revealed by an increase in levels of cytoplasmic RNA processing bodies (P‐bodies) upon hDIS3L2 depletion, which also increases half‐lives of investigated mRNAs. Consistently, RNA sequencing (RNA‐seq) analyses demonstrate that depletion of hDIS3L2, like downregulation of hXRN1 and hDIS3L, causes changed levels of multiple mRNAs. We suggest that hDIS3L2 is a key exosome‐independent effector of cytoplasmic mRNA metabolism.  相似文献   

14.
The effects of the nonpenetrating amino reactive reagent 4-acetamido-4′-isothiocyano-stilbene-2-2′-dilsulfonic acid (SITS) on anion transport (sulfate, chloride, and inorganic phosphate) were investigated in Ehrlich ascites tumor cells. Short time exposure to SITS produces a reversible inhibition (92%) of sulfate transport. The kinetics of interaction suggest that reversibly bound SITS competitively inhibits sulfate transport, Ki = 3 × 10?6 M. Incubation of tumor cells with SITS (1 × 10?4 M) for longer periods of time results in a time dependent irreversible inhibition of sulfate transport which obeys first order kinetics. The rate coefficient for the inactivation process is 0.040 min?1. The kinetics of irreversible inhibition is best explained by the irreversible binding of SITS to the sulfate transport site, and therefore makes SITS a potentially useful probe for the quantitation of these sites in the tumor cell. The lack of effect of irreversibly bound SITS on either chloride or inorganic phosphate transport points to a specificity in the interaction of SITS with the tumor cell membrane, as well as indicating that an alternate pathway exists for the movement of these anions across the membrane.  相似文献   

15.
Reaction of rac-warfarin, (?)-(1S,2R,4R)-endo-1,4,5,6,7,7-hexachlorobicyclo[2.2.1]hept-5-ene-2- carboxylic acid [(?)-HCA] and carbodiimide reagents gave two noncyclic ketonic diastereoisomeric derivatives whereas rac-warfarin and (?)-HCA acid chloride with 4-(dimethylamino)pyridine gave four cyclic hemiketal diastereoisomeric ester derivatives. The structure and stereochemistry of diastereoisomeric esters prepared from warfarin and p-chlorowarfarin were determined from 1H- and 13C-NMR spectra, mass spectra, and hydrolysis to warfarin and p-chlorowarfarin enantiomers. The structure and stereochemistry of one of the cyclic hemiketal diastereoisomeric derivatives of warfarin are supported by an X-ray crystallographic determination. Mechanisms for the formation of all products are proposed. © 1994 Wiley-Liss, Inc.  相似文献   

16.
The conversion of eremoacetal to (?)-1-(furan-3-yl)-4-hydroxy-4,8-dimethylnonane-1,6-dione establishes the configuration of (?)-4-hydroxymyoporone (athanagrandione) as R.  相似文献   

17.
Fully protected pA2′p5′A2′p5′A trimers 1a and 1b have been prepared as prodrug candidates for a short 2′‐5′ oligoadenylate, 2‐5A, and its 3′‐O‐Me analog, respectively. The kinetics of hog liver carboxyesterase (HLE)‐triggered deprotection in HEPES buffer (pH 7.5) at 37° has been studied. The deprotection of 1a turned out to be very slow, and 2‐5A never appeared in a fully deprotected form. By contrast, a considerable proportion of 1b was converted to the desired 2‐5A trimer, although partial removal of the 3′‐O‐[(acetyloxy)methyl] group prior to exposure of the adjacent phosphodiester linkage resulted in 2′,5′→3′,5′ phosphate migration and release of adenosine as side reactions.  相似文献   

18.
Protected dinucleoside‐2′,5′‐monophosphate has been prepared to develop a prodrug strategy for 2‐5A. The removal of enzymatically and thermally labile 4‐(acetylthio)‐2‐(ethoxycarbonyl)‐3‐oxo‐2‐methylbutyl phosphate protecting group and enzymatically labile 3′‐O‐pivaloyloxymethyl group was followed at pH 7.5 and 37 °C by HPLC from the fully protected dimeric adenosine‐2′,5′‐monophosphate 1 used as a model compound for 2‐5A. The desired unprotected 2′,3′‐O‐isopropylideneadenosine‐2′,5′‐monophosphate ( 9 ) was observed to accumulate as a major product. Neither the competitive isomerization of 2′,5′‐ to a 3′,5′‐linkage nor the P–O5′ bond cleavage was detected. The phosphate protecting group was removed faster than the 3′‐O‐protection and, hence, the attack of the neighbouring 3′‐OH on phosphotriester moiety did not take place.  相似文献   

19.
It was shown that racemic (±)‐ 2 [1′‐benzyl‐3‐(3‐fluoropropyl)‐3H‐spiro[[2]benzofuran‐1,4′‐piperidine], WMS‐1813 ] represents a promising positron emission tomography (PET) tracer for the investigation of centrally located σ1 receptors. To study the pharmacological activity of the enantiomers of 2 , a preparative HPLC separation of (R)‐2 and (S)‐2 was performed. The absolute configuration of the enantiomers was determined by CD‐spectroscopy together with theoretical calculations of the CD‐spectrum of a model compound. In receptor binding studies with the radioligand [3H]‐(+)‐pentazocine, (S)‐2 was thrice more potent than its (R)‐configured enantiomer (R)‐2 . The metabolic degradation of the more potent (S)‐enantiomer was considerably slower than the metabolism of (R)‐2 . The structures of the main metabolites of both enantiomers were elucidated by determination of the exact mass using an Orbitrap‐LC‐MS system. These experiments showed a stereoselective biotransformation of the enantiomers of 2 . Chirality, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
The modes of binding of 5′‐[4‐(aminoiminomethyl)phenyl]‐[2,2′‐Bifuran]‐5‐carboximidamide (DB832) to multi‐stranded DNAs: human telomere quadruplex, monomolecular R‐triplex, pyr/pur/pyr triplex consisting of 12 T*(T·A) triplets, and DNA double helical hairpin were studied. The optical adsorption of the ligand was used for monitoring the binding and for determination of the association constants and the numbers of binding sites. CD spectra of DB832 complexes with the oligonucleotides and the data on the energy transfer from DNA bases to the bound DB832 assisted in elucidating the binding modes. The affinity of DB832 to the studied multi‐stranded DNAs was found to be greater (Kass ≈ 107M?1) than to the duplex DNA (Kass ≈ 2 × 105M?1). A considerable stabilizing effect of DB832 binding on R‐triplex conformation was detected. The nature of the ligand tight binding differed for the studied multi‐stranded DNA depending on their specific conformational features: recombination‐type R‐triplex demonstrated the highest affinity for DB832 groove binding, while pyr/pur/pyr TTA triplex favored DB832 intercalation at the end stacking contacts and the human telomere quadruplex d[AG3(T2AG3)3] accommodated the ligand in a capping mode. Additionally, the pyr/pur/pyr TTA triplex and d[AG3(T2AG3)3] quadruplex bound DB832 into their grooves, though with a markedly lesser affinity. DB832 may be useful for discrimination of the multi‐sranded DNA conformations and for R‐triplex stabilization. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 8–20, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号