首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two strains of Cyanidium caldarium, one able to utilize nitrate as a substrate, and the other not, were tested for the presence of enzymes of ammonia assimilation. The nitrate-assimilating strain exhibits glutamate dehydrogenase activity. By contrast, the other strain lacks glutamate dehydrogenase; it possesses high alanine dehydrogenase and l-alanine aminotransferase activities which suggest that this strain may incorporate ammonia through reductive amination of pyruvate and may form glutamate from 2-ketoglutarate by a transamination reaction with alanine. Neither strain reveals glutamate synthase activity. Both strains contain similar levels of glutamine synthetase.  相似文献   

2.
3.
Two strains of Cyanidium caldarium, one able to utilize nitrate as a substrate, and the other not, were tested for the presence of enzymes of ammonia assimilation. The nitrate-assimilating strain exhibits glutamate dehydrogenase activity. By contrast, the other strain lacks glutamate dehydrogenase; it possesses high alanine dehydrogenase and L-alanine aminotransferase activities which suggest that this strain may incorporate ammonia through reductive amination of pyruvate and may form glutamate from 2-ketoglutarate by a transamination reaction with alanine. Neither strain reveals glutamate synthase activity. Both strains contain similar levels of glutamine synthetase.  相似文献   

4.
Mechanism of ammonia assimilation in streptococci   总被引:8,自引:0,他引:8  
  相似文献   

5.
The effects of methionine sulfoximine and ammonium chloride on [14C] glutamate metabolism in excised leaves of Triticum aestivum were investigated. Glutamine was the principal product derived from [U14C]glutamate in the light and in the absence of inhibitor or NH4Cl. Other amino acids, organic acids, sugars, sugar phosphates, and CO2 became slightly radioactive. Ammonium chloride (10 mm) increased formation of [14C] glutamine, aspartate, citrate, and malate but decreased incorporation into 2-oxoglutarate, alanine, and 14CO2. Methionine sulfoximine (1 mm) suppressed glutamine synthesis, caused NH3 to accumulate, increased metabolism of the added radioactive glutamate, decreased tissue levels of glutamate, and decreased incorporation of radioactivity into other amino acids. Methionine sulfoximine also caused most of the 14C from [U-14C]glutamate to be incorporated into malate and succinate, whereas most of the 14C from [1-14C]glutamate was metabolized to CO2 and sugar phosphates. Thus, formation of radioactive organic acids in the presence of methionine sulfoximine does not take place indirectly through “dark” fixation of CO2 released by degradation of glutamate when ammonia assimilation is blocked. When illuminated leaves supplied with [U-14C] glutamate without inhibitor or NH4Cl were transferred to darkness, there was increased metabolism of the glutamate to glutamine, aspartate, succinate, malate, and 14CO2. Darkening had little effect on the labeling pattern in leaves treated with methionine sulfoximine.  相似文献   

6.
Methabolism of methanol in plant organisms is considered in the paper. Enzymes of consecutive oxidation of methanol and enzymes responsible for incorporation of carbon from methanol molecule to methyl groups of phospholipids, carboxylic acids and carbohydrates have been described. The peculiarity of plant organisms is in interaction of reactions of methanol transformation with pathways of photorespiration and C1-metabolism and in the capacity to use methanol carbon to form organic matter through photosynthesis. The inclusion of methanol metabolites in anabolic processes occurs at the level of formaldehyde and formiate. As a result, exogenous methanol at low concentrations can stimulate the photosynthetic efficiency of plants.  相似文献   

7.
8.
The methanol metabolism in acatalasemic mice was studied by administering [14C]methanol and [14C]formic acid to acatalasemic and normal mice and determining the radioactivity of exhaled carbon dioxide. Methanol metabolism was also studied in acatalasemic and normal mice treated with 3-amino-1,2,4-triazole (AT), which is known to be an inhibitor of catalase (EC 1.11.1.6). The metabolism of methanol and formic acid was inhibited in acatalasemic mice as seen by reduced [14C]CO2 production. Similar results were obtained when AT was given prior to the methanol injection into the normal and acatalasemic mice. The results indicate the peroxidative activity of catalase plays the major role in the methanol metabolism in mice. On the other hand similar studies with [1-14C] ethanol showed that the metabolism of ethanol was not inhibited in acatalasemic mice.  相似文献   

9.
Glutamine synthetase from Pseudomonas aeruginosa is regulated by repression/derepression of enzyme synthesis and by adenylylation/deadenylylation control. High levels of deadenylylated biosynthetically active glutamine synthetase were observed in cultures growing with limiting amounts of nitrogen while synthesis of the enzyme was repressed and that present was adenylylated in cultures with excess nitrogen.NADP-and NAD-dependent glutamate dehydrogenase could be separated by column chromatography and showed molecular weights of 110,000 and 220,000, respectively. Synthesis of the NADP-dependent glutamate dehydrogenase is repressed under nitrogen limitation and by growth on glutamate. In contrast, NAD-dependent glutamate dehydrogenase is derepressed by glutamate. Glutamate synthase is repressed by glutamate but not by excess nitrogen.  相似文献   

10.
11.
The mechanism of ammonia assimilation in nitrogen fixing bacteria   总被引:1,自引:0,他引:1  
Summary Enzymatic and genetic evidence are presented for a new pathway of ammonia assimilation in nitrogen fixing bacteria: ammonium glutamine glutamate. This route to the important glutamate-glutamine family of amino acids differs from the conventional pathway, ammonium glutamate glutamine, in several respects. Glutamate synthetase [(glutamine amide-2-oxoglutarate aminotransferase) (oxidoreductase)], which is clearly distinct from glutamate dehydrogenase, catalyzes the reduced pyridine nucleotide dependent amination of -ketoglutarate with glutamine as amino donor yielding two molecules of glutamate as product. The enzyme is completely inhibited by the glutamine analogue DON, whereas glutamate dehydrogenase is not affected by this inhibitor; the glutamate synthetase reaction is irreversible. Glutamate synthetase is widely distributed in bacteria; the pyridine nucleotide coenzyme specificity of the enzyme varies in many of these species.The activities of key enzymes are modulated by environmental nitrogenous sources; for example, extracts of N2-grown cells of Klebsiella pneumoniae form glutamate almost exclusively by this new route and contain only trace amounts of glutamate dehydrogenase activity whereas NH3-grown cells possess both pathways. Also, the biosynthetically active form of glutamine synthetase with a low K m for ammonium predominates in the N2-grown cell.Several mutant strains of K. pneumoniae have been isolated which fail to fix nitrogen or to grow in an ammonium limited environment. Extracts of these strains prepared from cells grown on higher levels of ammonium have low levels of glutamate synthetase activity and contain the biosynthetically inactive species of glutamine synthetase along with high levels of glutamate dehydrogenase. These mutants missing the new assimilatory pathway have serious defects in their metabolism of many inorganic and organic nitrogen sources; utilization of at least 20 different compounds is effected. We conclude that the new ammonia assimilatory route plays an important role in nitrogenous metabolism and is essential for nitrogen fixation.Abbreviation DON 6-diazo-5-oxo-l-norleucine  相似文献   

12.
Chromatium vinosum strain D, Thiocapsa roseopersicina strain 6311 and Ectothiorhodospira mobilis strain 8112 were grown anaerobically in the light with various single nitrogen sources. When substituted for NH4Cl only glutamine and casamino acids supported good growth of all strains tested. Peptone and urea were utilized by C. vinosum and T. roseopersicina, glutamate, asparagine and nitrate only by C. vinosum. The strains were able to grow with molecular nitrogen; complete inhibition of this growth was observed in the presence of alanine with E. mobilis, and of alanine or asparagine with T. roseopersicina.Glutamate dehydrogenase, requiring either NADH or NADPH, NADH-linked glutamate synthase, and glutamine synthetase were demonstrate in the above organisms grown on NH4Cl.  相似文献   

13.
Beggiatoa alba B18LD was investigated for its pathways of ammonia assimilation. The increase in growth yields ofB. alba with excess acetate was linear from 0.1 to 2.0 mM ammonia.B. alba had strong glutamine synthetase (GS) and glutamate synthase (GOGAT) activities, irrespective of the ammonia concentration in the medium. Glutamate dehydrogenase activity was not found, and alanine dehydrogenase (aminating) was observed only whenB. alba was grown at high (2.0 mM) ammonia. Methionine sulfoximine, an inhibitor of GS, inhibited growth ofB. alba irrespective of the ammonia concentration in the medium. Thus it appears the primary pathway for ammonia assimilation inB. alba is via the GS-GOGAT pathway at both low and high ammonia concentrations. Preliminary experiments were unable to discern if theB. alba GS is modified by covalent modification.Non-standard abbreviations GS Glutamine synthetase - GOGAT glutamate-oxoglutarate aminotransferase - GDH glutamate dehydrogenase - ADH alanine dehydrogenase - MSX methionine sulfoximine - GOT glutamate-oxaloacetate aminotransferase - GPT glutamate-pyruvate aminotransferase  相似文献   

14.
Glutamine synthetase (GS) localized in the chloroplasts, GS2, is a key enzyme in the assimilation of ammonia (NH3) produced from the photorespiration pathway in angiosperms, but it is absent from some coniferous species belonging to Pinaceae such as Pinus. We examined whether the absence of GS2 is common in conifers (Pinidae) and also addressed the question of whether assimilation efficiency of photorespiratory NH3 differs between conifers that may potentially lack GS2 and angiosperms. Search of the expressed sequence tag database of Cryptomeria japonica, a conifer in Cupressaceae, and immunoblotting analyses of leaf GS proteins of 13 species from all family members in Pinidae revealed that all tested conifers exhibited only GS1 isoforms. We compared leaf NH3 compensation point (γNH3) and the increments in leaf ammonium content per unit photorespiratory activity (NH3 leakiness), i.e. inverse measures of the assimilation efficiency, between conifers (C. japonica and Pinus densiflora) and angiosperms (Phaseolus vulgaris and two Populus species). Both γNH3 and NH3 leakiness were higher in the two conifers than in the three angiosperms tested. Thus, we concluded that the absence of GS2 is common in conifers, and assimilation efficiency of photorespiratory NH3 is intrinsically lower in conifer leaves than in angiosperm leaves. These results imply that acquisition of GS2 in land plants is an adaptive mechanism for efficient NH3 assimilation under photorespiratory environments.  相似文献   

15.
The activities of the following enzymes were studied in connection with dinitrogen fixation in pea bacteroids: glutamine synthetase(L-glutamate: ammonia ligase (ADP-forming)(EC 6.3.1.2)(GS); glutamate dehydrogenase (NADP+)(L-glutamate: NADP+ oxidoreductase (deaminating)(EC 1.4.1.4)(GDH); glutamate synthase (L-glutamine: 2-exeglutarate aminotransferase (NADPH-oxidizing))(EC 2.6.1.53)(GOGAT). GS activity was high throughout the growth of the plant and GOGAT activity was always low. It is unlikely that GDH or the GS-GOGAT pathway can account for the incorporation of ammonia from dinitrogen fixation in the pea bacteroid,  相似文献   

16.
Abstract Acremonium persicinum grown in batch culture with ammonium tartrate as the nitrogen source possessed an NADP+-dependent glutamate dehydrogenase and a glutamine synthetase. Glutamate synthase was not detected under the culture conditions used. Kinetic studies of the NADP+-dependent glutamate dehydrogenase at 25°C and pH 7.6 revealed an apparent K m of 3.2 × 10−4 M for 2-oxoglutarate and an apparent K m of 1.0 × 10−5 M for ammonium ions, with corresponding apparent V max values of 0.089 and 0.13 μmol substrate converted/min/mg of protein, respectively. Glutamine synthetase was measured by the γ-glutamyl transferase reaction at 30°C and pH 7.55. This transferase reaction of glutamine synthetase had a higher rate at 30°C than at 25°C or 37°C.  相似文献   

17.
The present study was conducted to evaluate the effect of different salt concentrations (50 and 200 mM NaCl) on growth, permeability properties (electrolyte leakage, cell viability) and activity of glutamine synthetase (GS) and glutamate dehydrogenase (GDH) in roots of maize seedlings. Both salt concentrations significantly affected growth and permeability properties of maize seedling roots and this negative effect increased with concentration of salt and duration of experiments. On the other hand salinity induced only small changes in the activities of GS and GDH, usually small increase in the activity was observed. To characterise the possible protective effect of silicon (Si) on maize roots exposed to saline stress, different concentrations of Si were simultaneously applied to both, low (50 mM) and high (200 mM) salt concentrations. Possible protective effects of Si on studied parameters were analysed in time range of 3 days treatment with the most positive effect on salt-induced root growth inhibition at high salt concentration and electrolyte leakage. The results show significant increase in GDH activity under all the tested conditions, although the mechanisms underlying this increase have not been elucidated. The results indicate that silicon may ameliorate the salt-induced root growth inhibition and increase the plant vigour at stressful conditions.  相似文献   

18.
Abstract Nine strains of brown rhodospirilla, i.e. Rhodospirillum photometricum, R. molischianum and R. fulvum were examined with respect to nitrogen nutrition and the pathway of ammonia assimilation. R. photometricum strains were nutritionally more versatile than strains of the other two species; glutamate, aspartate, and several other amino acids supported good growth of R. photometricum but were poorly utilized by R. molischianum and R. fulvum . Glutamine and N2 supported excellent growth of strains of all species. The glutamine synthetase/glutamate synthase pathway served as the major means of ammonia assimilation in brown rhodospirilla; no evidence for glutamate dehydrogenase was obtained from any species. NADPH was required as coenzyme for glutamate synthase activity in R. photometricum strain while only NADH served in this connection in R. molischianum and R. fulvum .  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号