首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 507 毫秒
1.
We report the first evidence for the formation of the "607- and 580-nm forms" in the cytochrome oxidase aa3/H2O2 reaction without the involvement of tyrosine 280. The pKa of the 607-580-nm transition is 7.5. The 607-nm form is also formed in the mixed valence cytochrome oxidase/O2 reaction in the absence of tyrosine 280. Steady-state resonance Raman characterization of the reaction products of both the wild-type and Y280H cytochrome aa3 from Paracoccus denitrificans indicate the formation of six-coordinate low spin species, and do not support, in contrast to previous reports, the formation of a porphyrin pi-cation radical. We observe three oxygen isotope-sensitive Raman bands in the oxidized wild-type aa3/H2O2 reaction at 804, 790, and 358 cm-1. The former two are assigned to the Fe(IV)[double bond]O stretching mode of the 607- and 580-nm forms, respectively. The 14 cm-1 frequency difference between the oxoferryl species is attributed to variations in the basicity of the proximal to heme a3 His-411, induced by the oxoferryl conformations of the heme a3-CuB pocket during the 607-580-nm transition. We suggest that the 804-790 cm-1 oxoferryl transition triggers distal conformational changes that are subsequently communicated to the proximal His-411 heme a3 site. The 358 cm-1 mode has been found for the first time to accumulate with the 804 cm-1 mode in the peroxide reaction. These results indicate that the mechanism of oxygen reduction must be reexamined.  相似文献   

2.
Two radicals have been detected previously by electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectroscopies in bovine cytochrome oxidase after reaction with hydrogen peroxide, but no correlation could be made with predicted levels of optically detectable intermediates (P(M), F and F(z.rad;)) that are formed. This work has been extended by optical quantitation of intermediates in the EPR/ENDOR sample tubes, and by comparison with an analysis of intermediates formed by reaction with carbon monoxide in the presence of oxygen. The narrow radical, attributed previously to a porphyrin cation, is detectable at low levels even in untreated oxidase and increases with hydrogen peroxide treatments generally. It is presumed to arise from a side-reaction unrelated to the catalytic intermediates. The broad radical, attributed previously to a tryptophan radical, is observed only in samples with a significant level of F(z.rad;) but when F(z.rad;) is generated with hydrogen peroxide, is always accompanied by the narrow radical. When P(M) is produced at high pH with CO/O(2), no EPR-detectable radicals are formed. Conversion of the CO/O(2)-generated P(M) into F(z.rad;) when pH is lowered is accompanied by the appearance of a broad radical whose ENDOR spectrum corresponds to a tryptophan cation. Quantitation of its EPR intensity indicates that it is around 3% of the level of F(z.rad;) determined optically. It is concluded that low pH causes a change of protonation pattern in P(M) which induces partial electron redistribution and tryptophan cation radical formation in F(z.rad;). These protonation changes may mimic a key step of the proton translocation process.  相似文献   

3.
Reduced cytochrome c oxidase binds molecular oxygen, yielding an oxygenated intermediate first (Oxy) and then converts it to water via the reaction intermediates of P, F, and O in the order of appearance. We have determined the iron-oxygen stretching frequencies for all the intermediates by using time-resolved resonance Raman spectroscopy. The bound dioxygen in Oxy does not form a bridged structure with Cu(B) and the rate of the reaction from Oxy to P (P(R)) is slower at higher pH in the pH range between 6.8 and 8.0. It was established that the P intermediate has an oxo-heme and definitely not the Fe(a(3))-O-O-Cu(B) peroxy bridged structure. The Fe(a(3))=O stretching (nu(Fe=O)) frequency of the P(R) intermediate, 804/764 cm(-1) for (16)O/(18)O, is distinctly higher than that of F intermediate, 785/750 cm(-1). The rate of reaction from P to F in D(2)O solution is evidently slower than that in H(2)O solution, implicating the coupling of the electron transfer with vector proton transfer in this process. The P intermediate (607-nm form) generated in the reaction of oxidized enzyme with H(2)O(2) gave the nu(Fe=O) band at 803/769 cm(-1) for H(2)(16)O(2)/H(2)(18)O(2) and the simultaneously measured absorption spectrum exhibited the difference peak at 607 nm. Reaction of the mixed valence CO adduct with O(2) provided the P intermediate (P(M)) giving rise to an absorption peak at 607 nm and the nu(Fe=O) bands at 804/768 cm(-1). Thus, three kinds of P intermediates are considered to have the same oxo-heme a(3) structure. The nu(4) and nu(2) modes of heme a(3) of the P intermediate were identified at 1377 and 1591 cm(-1), respectively. The Raman excitation profiles of the nu(Fe=O) bands were different between P and F. These observations may mean the formation of a pi cation radical of porphyrin macrocycle in P.  相似文献   

4.
Lipid peroxidation in phosphatidylcholine liposomes induced by Fe(3+) alone, assessed by thiobarbituric acid-reactive substances (TBARS) production, was markedly enhanced as the solution pH was lowered from 7.4 to 5.5. On the other hand, at physiological pH, TBARS production by Fe(3+) was almost negligible. Results of the radical scavenger experiments with superoxide dismutase, catalase and hydroxyl radical ((&z.rad;)OH) scavengers (sodium benzoate, mannitol and dimethylthiourea), deoxyribose degradation and ESR spectrometry suggest that the stimulation of Fe(3+)-dependent lipid peroxidation under acidic conditions is involved in generation of superoxide anion (O(2)(&z.rad;-)), hydrogen peroxide (H(2)O(2)) and (&z.rad;)OH during the reaction. The stimulation of Fe(3+)-dependent TBARS production by increasing the [H(+)] completely disappeared by triphenylphosphine (TPP) treatment of the liposomes, but the reaction was reversible with either incorporation of cumen hydroperoxide (CumOOH) into the TPP-treated liposomes or the addition of CumOOH to the treated liposomes. Incubation of the CumOOH-incorporated TPP-treated liposomes with Fe(3+) at pH 5.5 also resulted in (&z.rad;)OH generation. Based on these results, a possible mechanism of stimulatory effect of Fe(3+) on lipid peroxidation under acidic conditions is discussed.  相似文献   

5.
In the presence of micromolar concentrations of H2O2, ferric cytochrome c oxidase forms a stable complex characterized by an increased absorption intensity at 606-607 nm with a weaker absorption band in the 560-580 nm region. Higher (millimolar) concentrations of H2O2 result in an enzyme exhibiting a Soret band at 427 nm and an alpha-band of increased intensity in the 589-610 nm region. Addition of H2O2 to ferric cytochrome c oxidase in the presence of cyanide results in absorbance increases at 444nm and 605nm. These changes are not seen if H2O2 is added to the cyanide complex of the ferric enzyme. The results support the idea that direct reaction of H2O2 with ferric cytochrome a 3 produces a 'peroxy' intermediate that is susceptible to further reduction by H2O2 at higher peroxide concentrations. Electron flow through cytochrome a is not involved, and the final product of the reaction is the so-called 'pulsed' or 'oxygenated' ferric form of the enzyme.  相似文献   

6.
The reaction of cytochrome c oxidase (COX) from Rhodobacter sphaeroides with hydrogen peroxide has been studied at alkaline (pH 8.5) and acidic (pH 6.5) conditions with the aid of a stopped-flow apparatus. Absorption changes in the entire 350-800 nm spectral range were monitored and analyzed by a global fitting procedure. The reaction can be described by the sequential formation of two intermediates analogous to compounds I and II of peroxidases: oxidized COX + H2O2 --> intermediate I --> intermediate II. At pH as high as 8.5, intermediate I appears to be a mixture of at least two species characterized by absorption bands at approximately 607 nm (P607) and approximately 580 nm (F-I580) that rise synchronously. At acidic pH (6.5), intermediate I is represented mainly by a component with an alpha-peak around 575 nm (F-I575) that is probably equivalent to the so-called F* species observed with the bovine COX. The data are consistent with a pH-dependent reaction branching at the step of intermediate I formation. To get further insight into the mechanism of the pH-dependence, the peroxide reaction was studied using two mutants of the R. sphaeroides oxidase, K362M and D132N, that block, respectively, the proton-conducting K- and D-channels. The D132N mutation does not affect significantly the Ox --> intermediate I step of the peroxide reaction. In contrast, K362M replacement exerts a dramatic effect, eliminating the pH-dependence of intermediate I formation. The data obtained allow us to propose that formation of the acidic form of intermediate I (F-I575, F*) requires protonation of some group at/near the binuclear site that follows or is concerted with peroxide binding. The protonation involves specifically the K-channel. Presumably, a proton vacancy can be generated in the site as a consequence of the proton-assisted heterolytic scission of the O-O bond of the bound peroxide. The results are consistent with a proposal [Vygodina, T. V., Pecoraro, C., Mitchell, D., Gennis, R., and Konstantinov, A. A. (1998) Biochemistry 37, 3053-3061] that the K-channel may be involved in the delivery of the first four protons in the catalytic cycle (starting from reduction of the oxidized form) including proton uptake coupled to reduction of the binuclear site and transfer of protons driven by cleavage of the dioxygen O-O bond in the binculear site. Once peroxide intermediate I has been formed, generation of a strong oxene ligand at the heme a3 iron triggers a transition of the enzyme to the "peroxidase conformation" in which the K-channel is closed and the binuclear site becomes protonically disconnected from the bulk aqueous phase.  相似文献   

7.
Fabian M  Palmer G 《Biochemistry》2001,40(6):1867-1874
In the absence of any external electron donor, the "peroxy" intermediate of cytochrome c oxidase (CcO-607) is converted to the ferryl form (CcO-580) and subsequently to oxidized enzyme. The rate of conversion of CcO-607 to the CcO-580 form is pH dependent between pH 3.0 and pH 7.6. A plot of the logarithm of the rate constant for this conversion is a linear function of pH with a slope of -0.92, implying the involvement of a single proton in the transition. Upon rapidly lowering the pH from 8.1 to 5.8, the uptake of one proton was observed by direct pH measurement, and the kinetics of proton uptake coincide with the spectral conversion of CcO-607 to CcO-580. We interpret the slow endogenous decay of CcO-607 to CcO-580 to be the result of proton transfer to a deprotonated group generated in the binuclear cavity during CcO-607 formation. This group is not freely accessible to protons from the medium, and its pK(a) is probably higher than 9.0.  相似文献   

8.
The P(M)-->F transition of the catalytic cycle of cytochrome c oxidase from bovine heart was investigated using single-electron photoreduction and monitoring the subsequent events using spectroscopic and electometric techniques. The P(M) state of the oxidase was generated by exposing the oxidized enzyme to CO plus O2. Photoreduction results in rapid electron transfer from heme a to oxoferryl heme a3 with a time constant of about 0.3 ms, as indicated by transients at 605 nm and 580 nm. This rate is approximately 5-fold more rapid than the rate of electron transfer from heme a to heme a3 in the F-->O transition, but is significantly slower than formation of the F state from the P(R) intermediate in the reaction of the fully reduced enzyme with O2 to form state F (70-90 micros). The approximately 0.3 ms P(M)-->F transition is coincident with a rapid photonic phase of transmembrane voltage generation, but a significant part of the voltage associated with the P(M)-->F transition is generated much later, with a time constant of 1.3 ms. In addition, the P(M)-->F transition of the R. sphaeroides oxidase was also measured and also was shown to have two phases of electrogenic proton transfer, with tau values of 0.18 and 0.85 ms.  相似文献   

9.
Elucidating the properties of the heme Fe-Cu(B) binuclear center and the dynamics of the protein response in cytochrome c oxidase is crucial to understanding not only the dioxygen activation and bond cleavage by the enzyme but also the events related to the release of the produced water molecules. The time-resolved step-scan FTIR difference spectra show the ν(7a)(CO) of the protonated form of Tyr residues at 1247 cm(-1) and that of the deprotonated form at 1301 cm(-1). By monitoring the intensity changes of the 1247 and 1301 cm(-1) modes as a function of pH, we measured a pK(a) of 7.8 for the observed tyrosine. The FTIR spectral changes associated with the tyrosine do not belong to Tyr-237 but are attributed to the highly conserved in heme-copper oxidases Tyr-136 and/or Tyr-133 residue (Koutsoupakis, K., Stavrakis, S., Pinakoulaki, E., Soulimane, T., and Varotsis, C. (2002) J. Biol. Chem. 277, 32860-32866). The oxygenation of CO by the mixed-valence form of the enzyme revealed the formation of the ~607 nm P (Fe(IV)=O) species in the pH 6-9 range and the return to the oxidized form without the formation of the 580 nm F form. The data indicate that Tyr-237 is not involved in the proton transfer pathway in the oxygenation of CO by the mixed-valence form of the enzyme. The implication of these results with respect to the role of Tyr-136 and Tyr-133 in proton transfer/gating along with heme a(3) ring D propionate-H(2)O-ring A propionate-Asp-372 site to the exit/output proton channel (H(2)O pool) is discussed.  相似文献   

10.
Hydrogen peroxide binding to ferric cytochrome c oxidase in proteoliposomes brings about a red-shift of the enzyme Soret band and increased absorption in the visible range with two prominent peaks at approx. 570 and 607 nm. The molar absorptivity of the H2O2-induced difference spectrum is virtually pH-independent in the Soret band and at 570 nm, whereas the peak at 607 nm increases approx. 3-fold upon alkalinization in a narrow pH range 6.0-7.2, the effect being reversible. The pH profile of this transition indicates ionization of two acid-base groups with close pK values of 6.7. The lineshape of the peroxide compound difference spectrum is found to respond to pH changes inside the proteoliposomes. It is suggested that peroxide-complexed enzyme can undergo a pH-dependent transition to a form with increased extinction at 605-607 nm, possibly corresponding to the 420 nm (or 'pulsed') conformer of the ferric cytochrome oxidase formed as an early product of the enzyme oxidation. Accordingly, relaxation of the '420 nm' form to the resting state would be linked to an uptake of two protons from the M-aqueous phase. This protolytic reaction might be a partial step of the cytochrome oxidase proton pumping mechanism or it could serve to regulate interconversion between the active 'pulsed' and less active 'resting' states of the enzyme in the membrane.  相似文献   

11.
Uchida T  Mogi T  Kitagawa T 《Biochemistry》2000,39(22):6669-6678
Cytochrome bo from Escherichia coli, a member of the heme-copper terminal oxidase superfamily, physiologically catalyzes reduction of O(2) by quinols and simultaneously translocates protons across the cytoplasmic membrane. The reaction of its ferric pulsed form with hydrogen peroxide was investigated with steady-state resonance Raman spectroscopy using a homemade microcirculating system. Three oxygen-isotope-sensitive Raman bands were observed at 805/X, 783/753, and (767)/730 cm(-)(1) for intermediates derived from H(2)(16)O(2)/H(2)(18)O(2). The experiments using H(2)(16)O(18)O yielded no new bands, indicating that all the bands arose from the Fe=O stretching (nu(Fe)(=)(O)) mode. Among them, the intensity of the 805/X cm(-)(1) pair increased at higher pH, and the species giving rise to this band seemed to correspond to the P intermediate of bovine cytochrome c oxidase (CcO) on the basis of the reported fact that the P intermediate of cytochrome bo appeared prior to the formation of the F species at higher pH. For this intermediate, a Raman band assignable to the C-O stretching mode of a tyrosyl radical was deduced at 1489 cm(-)(1) from difference spectra. This suggests that the P intermediate of cytochrome bo contains an Fe(IV)=O heme and a tyrosyl radical like compound I of prostaglandin H synthase. The 783/753 cm(-)(1) pair, which was dominant at neutral pH and close to the nu(Fe)(=)(O) frequency of the oxoferryl intermediate of CcO, presumably arises from the F intermediate. On the contrary, the (767)/730 cm(-)(1) species has no counterpart in CcO. Its presence may support the branched reaction scheme proposed previously for O(2) reduction by cytochrome bo.  相似文献   

12.
13.
Recent time-resolved optical absorption studies in our laboratory have indicated that the putative peroxy intermediate formed during the reduction of dioxygen to water by cytochrome oxidase (P(R)) is a pH-dependent mixture of compound A, P, and F [Van Eps, N., et al. (2003) Biochemistry 42, 5065-5073]. This conclusion is based on a kinetic analysis of flow-flash time-resolved data using a unidirectional sequential scheme with five apparent lifetimes. To account for this observation, we propose a more complex kinetic model that consists of branched pathways, one branch producing the 607 nm P form and the other the 580 nm F form. The two pathways are interconnected, and the rate of exchange between the two is pH-dependent. The kinetic analysis and testing of the new model involves a novel algebraic approach which transforms the intermediates of the complex branched scheme into intermediates comparable to those derived on the basis of a sequential model. The branched model reproduces the experimental data very well and is consistent with a variety of experimental observations. The two branches may arise from two structurally different CO or O(2) conformers or protein conformers, which could lead to different accessibilities of proton donors to the binuclear center.  相似文献   

14.
Structures of reaction intermediates of bovine cytochrome c oxidase (CcO) in the reactions of its fully reduced form with O2 and fully oxidized form with H2O2 were investigated with time-resolved resonance Raman (RR) and infrared spectroscopy. Six oxygen-associated RR bands were observed for the reaction of CcO with O2. The isotope shifts for an asymmetrically labeled dioxygen, (16)O(18)O, has established that the primary intermediate of cytochrome a3 is an end-on type dioxygen adduct and the subsequent intermediate (P) is an oxoiron species with Fe=O stretch (nu(Fe=O)) at 804/764 cm(-1) for (16)O2/(18)O2 derivatives, although it had been long postulated to be a peroxy species. The P intermediate is converted to the F intermediate with nu(Fe=O) at 785/751 cm(-1) and then to a ferric hydroxy species with nu(Fe-OH) at 450/425 cm(-1) (443/417 cm(-1) in D2O). The rate of reaction from P to F intermediates is significantly slower in D2O than in H2O. The reaction of oxidized CcO with H2O2 yields the same oxygen isotope-sensitive bands as those of P and F, indicating the identity of intermediates. Time-resolved infrared spectroscopy revealed that deprotonation of carboxylic acid side chain takes place upon deligation of a ligand from heme a3. UV RR spectrum gave a prominent band due to cis C=C stretch of phospholipids tightly bound to purified CcO.  相似文献   

15.
EPR and optical analysis of the 420 nm form of cytochrome oxidase (Kumar, C., Naqui, A., and Chance, B. (1984) J. Biol. Chem. 259, 2073-2076) shows that 1) the 420 nm form possesses a 605 nm band, g = 5 EPR signals, and a slightly blue shifted 655 nm band; 2) the reaction of H2O2 with the 420 nm form generates the peroxide complex (Soret band at 427 nm) with the formation of a 580 nm band and abolition of both the 655 nm band and the g = 5 EPR signal. Comparison of our results with past data shows that various forms of oxidase formed from the resting oxidase through different protocols may be identified to be either the 420 nm or the 427 nm form and leads to identification of a peroxy intermediate during oxidase turnover.  相似文献   

16.
Perfusion-induced attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy was used to investigate changes induced in protein and cofactors of bovine cytochrome c oxidase when it was converted from the oxidised state to the catalytic P(M) intermediate. The transition was induced in a film of detergent-depleted 'fast' oxidase with a buffer containing CO and O(2). The extent of formation of the P(M) state was quantitated simultaneously by monitoring formation of its characteristic 607-nm band with a scanned visible beam reflected off the top surface of the prism. The P(M) minus O FTIR difference spectrum is distinctly different from the redox spectra reported to date and includes features that can be assigned to changes of haem a(3) and surrounding protein. Tentative assignments are made based on vibrational data of related proteins and model compounds.  相似文献   

17.
Inactivation of glucose oxidase occurred in the presence of bromide, vanadate, H(2)O(2), and phosphate (the bromide system), and this was prevented by NADH or phenol red, a bromine acceptor. Glucose oxidase present during the reaction between diperoxovanadate and a reduced form of vanadate, vanadyl (the vanadyl system), but not added after mixing the reactants, was inactivated, and this was accompanied by a loss of binding of the dye, Coomassie blue, to the protein. The transient intermediate of the type OVOOV(O(2)), known to form in these reactions and used in the oxidation of bromide ion and NADH, appears to be responsible for inactivating glucose oxidase. In both systems, the inactivation of the enzyme was prevented by histidine and DTT, known to quench singlet-oxygen. By direct measurement of 1270-nm emission of singlet-oxygen, its generation was demonstrated in the bromide system, and in the reaction of hypohalous acids with diperoxovanadate, but not in the vanadyl system. By themselves both hypohalous acids, HOCl and HOBr inactivated glucose oxidase, and their prior reaction with H(2)O(2) during which singlet-oxygen was released, protected the enzyme. The results provide support for possible oxidative inactivation of glucose oxidase by diperoxovanadate-derived oxidants.  相似文献   

18.
Identification of the locations of protonatable sites in cytochrome c oxidase that are influenced by reactions in the binuclear centre is critical to assessment of proposed coupling mechanisms, and to controversies on where the pumping steps occur. One such protonation site is that which governs interconversion of the isoelectronic 607 nm 'P(M)' and 580 nm 'F' forms of the two-electron-reduced oxygen intermediate. Low pH favours protonation of a site that is close to an electron paramagnetic resonance (EPR)-silent radical species in P(M), and this induces a partial electronic redistribution to form an EPR-detectable tryptophan radical in F. A further protonatable group that must be close to the binuclear centre has been detected in bacterial oxidases by Fourier transform infrared spectroscopy from pH-dependent changes in the haem-bound CO vibration frequency at low temperatures. However, in bovine cytochrome c oxidase under similar conditions of measurement, haem-bound CO remains predominantly in a single 1963 cm(-1) form between pH 6.5 and 8.5, indicating that this group is not present. Lack of pH dependence extends to the protein region of the CO photolysis spectra and suggests that both the reduced and the reduced/CO states do not have titratable groups that affect the binuclear centre strongly in the pH range 6.5-8.5. This includes the conserved glutamic acid residue E242 whose pK appears to be above 8.5 even in the fully oxidised enzyme. The results are discussed in relation to recent ideas on coupling mechanism.  相似文献   

19.
The reaction between mixed-valence (MV) cytochrome c oxidase from beef heart with H2O2 was investigated using the flow-flash technique with a high concentration of H2O2 (1 M) to ensure a fast bimolecular interaction with the enzyme. Under anaerobic conditions the reaction exhibits 3 apparent phases. The first phase (tau congruent with 25 micros) results from the binding of one molecule of H2O2 to reduced heme a3 and the formation of an intermediate which is heme a3 oxoferryl (Fe4+=O2-) with reduced CuB (plus water). During the second phase (tau congruent with 90 micros), the electron transfer from CuB+ to the heme oxoferryl takes place, yielding the oxidized form of cytochrome oxidase (heme a3 Fe3+ and CuB2+, plus hydroxide). During the third phase (tau congruent with 4 ms), an additional molecule of H2O2 binds to the oxidized form of the enzyme and forms compound P, similar to the product observed upon the reaction of the mixed-valence (i.e., two-electron reduced) form of the enzyme with dioxygen. Thus, within about 30 ms the reaction of the mixed-valence form of the enzyme with H2O2 yields the same compound P as does the reaction with dioxygen, as indicated by the final absorbance at 436 nm, which is the same in both cases. This experimental approach allows the investigation of the form of cytochrome c oxidase which has the heme a3 oxoferryl intermediate but with reduced CuB. This state of the enzyme cannot be obtained from the reaction with dioxygen and is potentially useful to address questions concerning the role of the redox state in CuB in the proton pumping mechanism.  相似文献   

20.
The yields of nitrate and nitrite from decomposition of peroxynitrite in phosphate buffer at 37 degrees C were determined in the pH range 1-14. The NO(2)(-)/NO(3)(-) yields showed a stepwise variation with pH, with inflection points at approximately pH 3.1, 5.8, 6.8, 8.0, and 11.9. Nitrite formation increased strongly above pH 7 at the expense of nitrate, but above pH 12 nitrate again became the major product (80% at pH 14). At this pH, the Arrhenius parameters were E(a)=24.1+/-0.2kcal mol(-1) and A=(4.9+/-1.3)x10(12)s(-1). The yields of NO(2)(-), NO(3)(-), and O(2) measured at pH 5.8, 7.4, and 8.5 as a function of the initial peroxynitrite concentration (50-1000 microM) were linear only at pH 5.8. In the presence of carbon dioxide, oxygen production at pH 7.5 and pH 10 was found to be linear on the CO(2) concentration. The experimental observations were satisfactorily reproduced by kinetic simulations including principal component analyses. These data strongly suggest that the chemistry of peroxynitrite is exclusively mediated by z.rad;NO(2) and HO(z.rad;) radicals in the absence, and by z.rad;NO(2) and CO(3)(z.rad;-) radicals in the presence of CO(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号