首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hiatt AJ  Lowe RH 《Plant physiology》1967,42(12):1731-1736
Excised roots of barley (Hordeum vulgare, var. Campana) lost organic acids, amino acids, K+, and Cl within 15 minutes after initiation of anaerobic treatment or treatment with NaCN and 2,4-dinitrophenol. Initial loss of organic acids when roots were placed under N2 is attributed to a decarboxylation reaction, possibly catalyzed by phosphoenolpyruvate carboxykinase. Organic and amino acids began to leak from the roots to the bathing medium after 1 to 2 hours under N2, indicating injury to cell membranes. During the first hour of anaerobic treatment, K+ loss from low-salt roots was equivalent to organic acid loss. Potassium loss from roots containing high levels of KCl was approximately equal to organic acid plus amino acid loss; and Cl loss was approximately equal to amino acid loss. It is postulated that, within cells, organic acids may electrostatically bind an equivalent quantity of cations and that amino acids may bind an equivalent quantity of both cations and anions.  相似文献   

2.
The effect of nitrogen form (NH4-N, NH4-N + NO3, NO3) on nitrate reductase activity in roots and shoots of maize (Zea mays L. cv INRA 508) seedlings was studied. Nitrate reductase activity in leaves was consistent with the well known fact that NO3 increases, and NH4+ and amide-N decrease, nitrate reductase activity. Nitrate reductase activity in the roots, however, could not be explained by the root content of NO3, NH4-N, and amide-N. In roots, nitrate reductase activity in vitro was correlated with the rate of nitrate reduction in vivo. Inasmuch as nitrate reduction results in the production of OH and stimulates the synthesis of organic anions, it was postulated that nitrate reductase activity of roots is stimulated by the released OH or by the synthesized organic anions rather than by nitrate itself. Addition of HCO3 to nutrient solution of maize seedlings resulted in a significant increase of the nitrate reductase activity in the roots. As HCO3, like OH, increases pH and promotes the synthesis of organic anions, this provides circumstantial evidence that alkaline conditions and/or organic anions have a more direct impact on nitrate reductase activity than do NO3, NH4-N, and amide-N.  相似文献   

3.
R. J. Haynes 《Plant and Soil》1990,126(2):247-264
The processes responsible for maintenance of cation-anion balance in plants and their relation to active ion accumulation and changes in rhizosphere pH are outlined and discussed. The major processes involved are: (1) accumulation and degradation of organic acids which occur in the plant mainly as organic acid anions (and their transfer within the plant) and (2) extrusion of H+ or OH into the rhizosphere. The relative importance of the two processes is determined by the size of the excess anion or cation uptake. Indeed, plants typically absorb unequal quantities of nutritive cations (NH4 ++Ca2++ Mg2++K++Na+) and anions (NO3 +Cl+SO4 2–+H2PO4 ) and charge balance is maintained by excretion of an amount of H+ or OH which is stoichiometrically equal to the respective excess cation or anion uptake. The mechanisms and processes by which H+ and in particular OH ions are excreted in response to unequal cation-anion uptake are, however, poorly understood.The contemporary view is that primary active extrusion of H+, catalyzed by a membrane-located ATPase, is the major driving force for secondary transport of cations and anions across the plasma membrane. However, the fact that net OH extrusion often occurs (since excess anion absorption commonly takes place) implies there is a yet-to-be characterized OH ion efflux mechanism at the plasma membrane that is associated with anion uptake. There is, therefore, a need for future studies of the uptake mechanisms and stoichiometry of anion uptake; particularly that of NO3 which is often the predominant anion absorbed. Another related phenonenon which requires detailed study in terms of cation-anion balance is localized rhizosphere acidification which can occur in response to deficiencies of Fe and P.  相似文献   

4.
We compared growth kinetics of Prorocentrum donghaiense cultures on different nitrogen (N) compounds including nitrate (NO3 ), ammonium (NH4 +), urea, glutamic acid (glu), dialanine (diala) and cyanate. P. donghaiense exhibited standard Monod-type growth kinetics over a range of N concentraions (0.5–500 μmol N L−1 for NO3 and NH4 +, 0.5–50 μmol N L−1 for urea, 0.5–100 μmol N L−1 for glu and cyanate, and 0.5–200 μmol N L−1 for diala) for all of the N compounds tested. Cultures grown on glu and urea had the highest maximum growth rates (μm, 1.51±0.06 d−1 and 1.50±0.05 d−1, respectively). However, cultures grown on cyanate, NO3 , and NH4 + had lower half saturation constants (Kμ, 0.28–0.51 μmol N L−1). N uptake kinetics were measured in NO3 -deplete and -replete batch cultures of P. donghaiense. In NO3 -deplete batch cultures, P. donghaiense exhibited Michaelis-Menten type uptake kinetics for NO3 , NH4 +, urea and algal amino acids; uptake was saturated at or below 50 μmol N L−1. In NO3 -replete batch cultures, NH4 +, urea, and algal amino acid uptake kinetics were similar to those measured in NO3 -deplete batch cultures. Together, our results demonstrate that P. donghaiense can grow well on a variety of N sources, and exhibits similar uptake kinetics under both nutrient replete and deplete conditions. This may be an important factor facilitating their growth during bloom initiation and development in N-enriched estuaries where many algae compete for bioavailable N and the nutrient environment changes as a result of algal growth.  相似文献   

5.
The effects of monovalent cations - inorganic alakali metal cations and organic quanternary ammonium cations - and monovalent inorganic anions on ADP-induced aggregation of bovine platelets were investigated. In the presence of K+, Rb+, Cs+, choline or tetramethylammonium, aggeregation proceeded. However, aggregation was markedly restricted in media containing Li+, Na+, tetrabutylammonium or dimethyldibenzylammonium. With anions, aggregation proceeded in the order Cl > Br > I > Clo4 > SCN. The effects of cations significantly depended on Ca2+ concentration, whereas those of the anions depended little of Ca2+. Anions such as SCN and ClO4 markedly decreased the fluorescence of the surface charge probe 2-p-tuluidinylnaphthalene-6-sulfonate, whereas cations had less pronouced effects. The relative effects of the anions on the fluorescence were consistent with their relative inhibitory effects on aggregation. These results suggest that inhibition of platelet aggregation by the anions is due to a change in the surface change of the platelet plasma membrane. On the other hand, kinetic analysis suggests that the effects of monovalent cations on platelet aggregation are due to their competition with Ca2+ during the process of aggregation.  相似文献   

6.
Kiwifruit plants (Actinidia deliciosa cv. Hayward) were grown in Hoagland nutrient solution with calcium nitrate, potassium nitrate, ammonium nitrate or ammonium chloride as the nitrogen source. Plants grown in the solution with nitrate nitrogen displayed a higher oxalate content, greater shoot length and leaf area, and higher content of ascorbic acid and NO3 ions in the leaves. Plants grown in the solution with ammonium nitrate, and particularly with ammonium chloride, showed low oxalate content, low content of ascorbic acid and NO3 , high content of Cl and Na+, low shoot length and leaf area. Oxalate formation appeared to be connected with the assimulation of nitrate, more precisely with nitrate reduction, while ammonium nitrogen assimilation did not induce the synthesis of oxalic acid.  相似文献   

7.
Tomato plants (Lycopersicon esculentum L. var. Ailsa Craig) were grown in water culture in nutrient solution in a series of 10 increasing levels of nitrate nutrition. Using whole plant data derived from analytical and yield data of individual plant parts, the fate of anion charge arising from increased NO3 assimilation was followed in its distribution between organic anion accumulation in the plant and OH efflux into the nutrient solution as calculated by excess anion over cation uptake. With increasing NO3 nutrition the bulk of the anion charge appeared as organic anion accumulation in the plants. OH efflux at a maximum accounted for only 20% of the anion charge shift. The major organic anion accumulated in response to nitrate assimilation was malate. The increase in organic anion accumulation was paralleled by an increase in cation concentration (K+, Ca2+, Mg2+, Na+). Total inorganic anion levels (NO3, SO42−, H2PO4, Cl) were relatively constant. The effect of increasing NO3 nutrition in stimulating organic anion accumulation was much more pronounced in the tops than in the roots.  相似文献   

8.
Hiatt AJ 《Plant physiology》1967,42(2):294-298
Excised roots of barley (Hordeum vulgare, var. Campana) were incubated in KCl, K2SO4, CaCl2, and NaCl solutions at concentrations of 10−5 to 10−2 n. Changes in substrate solution pH, cell sap pH, and organic acid content of the roots were related to differences in cation and anion absorption. The pH of expressed sap of roots increased when cations were absorbed in excess of anions and decreased when anions were absorbed in excess of cations. The pH of the cell sap shifted in response to imbalances in cation and anion uptake in salt solutions as dilute as 10−5 n. Changes in cell sap pH were detectable within 15 minutes after the roots were placed in 10−3 n K2SO4. Organic acid changes in the roots were proportional to expressed sap pH changes induced by unbalanced ion uptake. Changes in organic acid content in response to differential cation and anion uptake appear to be associated with the low-salt component of ion uptake.  相似文献   

9.
Soybeans (Glycine max L. Merr., cv Kingsoy) were grown on media containing NO3 or urea. The enrichments of shoots in K+, NO3, and total reduced N (Nr), relative to that in Ca2+, were compared to the ratios K+/Ca2+,NO3/Ca2+, and Nr/Ca2+ in the xylem saps, to estimate the cycling of K+, and Nr. The net production of carboxylates (R) was estimated from the difference between the sums of the main cations and inorganic anions. The estimate for shoots was compared to the theoretical production of R associated with NO3 assimilation in these organs, and the difference was attributed to export of R to roots. The net exchange rates of H+ and OH between the medium and roots were monitored. The shoots were the site of more than 90% of total NO3 reduction, and Nr was cycling through the plants at a high rate. Alkalinization of the medium by NO3-fed plants was interrupted by stem girdling, and not restored by glucose addition to the medium. It was concluded that the majority of the base excreted in NO3 medium originated from R produced in the shoots, and transported to the roots together with K+. As expected, cycling of K+ and reduced N was favoured by NO3 nutrition as compared to urea nutrition.  相似文献   

10.
Cropland soil is an important source of atmospheric nitric oxide (NO) and ammonia (NH3). Chinese croplands are characterized by intensive management, but limited information is available with regard to NO emissions from croplands in China and NH3 emissions in south China. In this study, a mesocosm experiment was conducted to measure NO and NH3 emissions from a typical vegetable-land soil in the Pearl River Delta following the applications of 150 kg N ha−1 as urea, ammonium nitrate (AN) and ammonium bicarbonate (ABC), respectively. Over the sampling period after fertilization (72 days for NO and 39 days for NH3), mean NO fluxes (± standard error of three replicates) in the control and urea, AN and ABC fertilized mesocosms were 10.9±0.9, 73.1±2.9, 63.9±1.8 and 66.0±4.0 ng N m−2 s−1, respectively; mean NH3 fluxes were 8.9±0.2, 493.6±4.4, 144.8±0.1 and 684.7±8.4 ng N m−2 s−1, respectively. The fertilizer-induced NO emission factors for urea, AN and ABC were 2.6±0.1%, 2.2±0.1% and 2.3±0.2%, respectively. The fertilizer-induced NH3 emission factors for the three fertilizers were 10.9±0.2%, 3.1±0.1% and 15.2±0.4%, respectively. From the perspective of air quality protection, it would be better to increase the proportion of AN application due to its lower emission factors for both NO and NH3.  相似文献   

11.
A distinctive feature of the voltage-dependent chloride channels ClC-0 (the Torpedo electroplaque chloride channel) and ClC-1 (the major skeletal muscle chloride channel) is that chloride acts as a ligand to its own channel, regulating channel opening and so controlling the permeation of its own species. We have now studied the permeation of a number of foreign anions through ClC-1 using voltage-clamp techniques on Xenopus oocytes and Sf9 cells expressing human (hClC-1) or rat (rClC-1) isoforms, respectively. From their effect on channel gating, the anions presented in this paper can be divided into three groups: impermeant or poorly permeant anions that can not replace Cl as a channel opener and do not block the channel appreciably (glutamate, gluconate, HCO3 , BrO3 ); impermeant anions that can open the channel and show significant block (methanesulfonate, cyclamate); and permeant anions that replace Cl at the regulatory binding site but impair Cl passage through the channel pore (Br, NO3 , ClO3 , I, ClO4 , SCN). The permeability sequence for rClC-1, SCN ∼ ClO4 > Cl > Br > NO3 ∼ ClO3 > I >> BrO3 > HCO3 >> methanesulfonate ∼ cyclamate ∼ glutamate, was different from the sequence determined for blocking potency and ability to shift the P open curve, SCN ∼ ClO4 > I > NO3 ∼ ClO3 ∼ methanesulfonate > Br > cyclamate > BrO3 > HCO3 > glutamate, implying that the regulatory binding site that opens the channel is different from the selectivity center and situated closer to the external side. Channel block by foreign anions is voltage dependent and can be entirely accounted for by reduction in single channel conductance. Minimum pore diameter was estimated to be ∼4.5 Å. Anomalous mole-fraction effects found for permeability ratios and conductance in mixtures of Cl and SCN or ClO4 suggest a multi-ion pore. Hydrophobic interactions with the wall of the channel pore may explain discrepancies between the measured permeabilities of some anions and their size.  相似文献   

12.
Experiments document the ability of two species of autotrophic methanogens to assimilate and utilize organic substrates as the nutrient sulfur or nitrogen source and as a carbon source during growth on H2-CO2. Methanobacterium thermoautotrophicum strain ΔH and the mesophilic species Methanobacterium sp. strain Ivanov grew with glutamine as the nitrogen source or cysteine as the sulfur source. M. thermoautotrophicum also utilized urea as the nitrogen source and as a carbon precursor for methane and cell synthesis. Methanobacterium sp. strain Ivanov grew with methionine as the sulfur source. The growth rate of two different Methanobacterium species was lower on an organic N or S source than on ammonium or sulfide. 35S and 14C tracer studies demonstrated that amino acid or urea assimilation correlated with time and amount of growth. The rate of [35S]cysteine incorporation was similar in strain ΔH (34 nmol h−1 mg of cells−1) and strain Ivanov (23 nmol h−1 mg of cells−1). However, the rate of [14C]acetate incorporation was dramatically different (17 versus 208 nmol h−1 mg of cells−1 in strains ΔH and Ivanov, respectively). [14C]acetate accounted for 1.3 and 21.2% of the total cell carbon synthesized by strains ΔH and Ivanov, respectively. Amino acids and urea were mainly assimilated into the cell protein fraction, but accounted for less than 2.0% of the total cell carbon synthesized. The data suggest that a biochemical-genetic approach to understanding cell carbon synthesis in methanogens is feasible; mutants that are auxotrophic for either acetate, glutamine, cysteine, or methionine are suggested as future targets for genetic studies.  相似文献   

13.
Ricinus communis L. plants were grown in nutrient solutions in which N was supplied as NO3 or NH4+, the solutions being maintained at pH 5.5. In NO3-fed plants excess nutrient anion over cation uptake was equivalent to net OH efflux, and the total charge from NO3 and SO42− reduction equated to the sum of organic anion accumulation plus net OH efflux. In NH4+-fed plants a large H+ efflux was recorded in close agreement with excess cation over anion uptake. This H+ efflux equated to the sum of net cation (NH4+ minus SO42−) assimilation plus organic anion accumulation. In vivo nitrate reductase assays revealed that the roots may have the capacity to reduce just under half of the total NO3 that is taken up and reduced in NO3-fed plants. Organic anion concentration in these plants was much higher in the shoots than in the roots. In NH4+-fed plants absorbed NH4+ was almost exclusively assimilated in the roots. These plants were considerably lower in organic anions than NO3-fed plants, but had equal concentrations in shoots and roots. Xylem and phloem saps were collected from plants exposed to both N sources and analyzed for all major contributing ionic and nitrogenous compounds. The results obtained were used to assist in interpreting the ion uptake, assimilation, and accumulation data in terms of shoot/root pH regulation and cycling of nutrients.  相似文献   

14.
Filamentous sulfur bacteria of the genus Thioploca occur as dense mats on the continental shelf off the coast of Chile and Peru. Since little is known about their nitrogen, sulfur, and carbon metabolism, this study was undertaken to investigate their (eco)physiology. Thioploca is able to store internally high concentrations of sulfur globules and nitrate. It has been previously hypothesized that these large vacuolated bacteria can oxidize sulfide by reducing their internally stored nitrate. We examined this nitrate reduction by incubation experiments of washed Thioploca sheaths with trichomes in combination with 15N compounds and mass spectrometry and found that these Thioploca samples produce ammonium at a rate of 1 nmol min−1 mg of protein−1. Controls showed no significant activity. Sulfate was shown to be the end product of sulfide oxidation and was observed at a rate of 2 to 3 nmol min−1 mg of protein−1. The ammonium and sulfate production rates were not influenced by the addition of sulfide, suggesting that sulfide is first oxidized to elemental sulfur, and in a second independent step elemental sulfur is oxidized to sulfate. The average sulfide oxidation rate measured was 5 nmol min−1 mg of protein−1 and could be increased to 10.7 nmol min−1 mg of protein−1 after the trichomes were starved for 45 h. Incorporation of 14CO2 was at a rate of 0.4 to 0.8 nmol min−1 mg of protein−1, which is half the rate calculated from sulfide oxidation. [2-14C]acetate incorporation was 0.4 nmol min−1 mg of protein−1, which is equal to the CO2 fixation rate, and no 14CO2 production was detected. These results suggest that Thioploca species are facultative chemolithoautotrophs capable of mixotrophic growth. Microautoradiography confirmed that Thioploca cells assimilated the majority of the radiocarbon from [2-14C]acetate, with only a minor contribution by epibiontic bacteria present in the samples.  相似文献   

15.
Atrazine, metolachlor, carbaryl, and chlorothalonil are detected in streams throughout the U.S. at concentrations that may have adverse effects on benthic microbes. Sediment samples were exposed to these pesticides to quantify responses of ammonium, nitrate, and phosphate uptake by the benthic microbial community. Control uptake rates of sediments had net remineralization of nitrate (−1.58 NO3 µg gdm−1 h−1), and net assimilation of phosphate (1.34 PO4 µg gdm−1 h−1) and ammonium (0.03 NH4 µg gdm−1 h−1). Metolachlor decreased ammonium and phosphate uptake. Chlorothalonil decreased nitrate remineralization and phosphate uptake. Nitrate, ammonium, and phosphate uptake rates are more pronounced in the presence of these pesticides due to microbial adaptations to toxicants. Our interpretation of pesticide availability based on their water/solid affinities supports no effects for atrazine and carbaryl, decreasing nitrate remineralization, and phosphate assimilation in response to chlorothalonil. Further, decreased ammonium and phosphate uptake in response to metolachlor is likely due to affinity. Because atrazine target autotrophs, and carbaryl synaptic activity, effects on benthic microbes were not hypothesized, consistent with results. Metolachlor and chlorothalonil (non-specific modes of action) had significant effects on sediment microbial nutrient dynamics. Thus, pesticides with a higher affinity to sediments and/or broad modes of action are likely to affect sediment microbes'' nutrient dynamics than pesticides dissolved in water or specific modes of action. Predicted nutrient uptake rates were calculated at mean and peak concentrations of metolachlor and chlorothalonil in freshwaters using polynomial equations generated in this experiment. We concluded that in natural ecosystems, peak chlorothalonil and metolachlor concentrations could affect phosphate and ammonium by decreasing net assimilation, and nitrate uptake rates by decreasing remineralization, relative to mean concentrations of metolachlor and chlorothalonil. Our regression equations can complement models of nitrogen and phosphorus availability in streams to predict potential changes in nutrient dynamics in response to pesticides in freshwaters.  相似文献   

16.
Observations of near-bottom populations of Karenia brevis suggest that these cells may derive nutrients from the sediment–water interface. Cells undergoing a metabolic-mediated migration may be in close proximity to enhanced concentrations of nutrients associated with the sediment during at least a fraction of their diel cycle. In this study, the growth, uptake and assimilation rates of ammonium, nitrate, and urea by K. brevis were examined on a diel basis to better understand the potential role of these nutrients in the near-bottom ecology of this species. Three strains of K. brevis, C6, C3, and CCMP 2229, were grown under 12:12 light dark cycle under 30 μmol photons m−2 s−1 delivered to the surface plain of batch cultures. Nitrogen uptake was evaluated using 15N tracer techniques and trichloroacetic acid extraction was used to evaluate the quantity of nitrogen (N) assimilated into cell protein. Growth rates ranged from a low of 0.12 divisions day−1 for C6 and C3 grown on nitrate to a high of 0.18 divisions day−1 for C3 grown on urea. Diurnal maximum uptake rates, ρmax, varied from 0.41 pmol-N cell−1 h−1 for CCMP 2229 grown on nitrate, to 1.29 pmol-N cell−1 h−1 for CCMP 2229 grown on urea. Average nocturnal uptake rates were 29% of diurnal rates for nitrate, 103% of diurnal uptake rates for ammonium and 56% of diurnal uptake rates for urea. Uptake kinetic parameters varied between substrates, between strains and between day and night measurements. Highest maximum uptake rates were found for urea for strains CCMP2229 and C3 and for ammonium for strain C6. Rates of asmilation into protein also varied day and night, but overall were highest for urea. The comparison of maximal uptake rates as well as assimilation efficiencies indicate that ammonium and urea are utilized (taken up and assimilated) more than twice was fast as nitrate on a diel basis.  相似文献   

17.
Ricinus communis L. was used to test the Dijkshoorn-Ben Zioni hypothesis that NO3 uptake by roots is regulated by NO3 assimilation in the shoot. The fate of the electronegative charge arising from total assimilated NO3 (and SO42−) was followed in its distribution between organic anion accumulation and HCO3 excretion into the nutrient solution. In plants adequately supplied with NO3, HCO3 excretion accounted for about 47% of the anion charge, reflecting an excess nutrient anion over cation uptake. In vivo nitrate reductase assays revealed that the roots represented the site of about 44% of the total NO3 reduction in the plants. To trace vascular transport of ionic and nitrogenous constituents within the plant, the composition of both xylem and phloem saps was thoroughly investigated. Detailed dry tissue and sap analyses revealed that only between 19 and 24% of the HCO3 excretion could be accounted for from oxidative decarboxylation of shoot-borne organic anions produced in the NO3 reduction process. The results obtained in this investigation may be interpreted as providing direct evidence for a minor importance of phloem transport of cation-organate for the regulation of intracellular pH and electroneutrality, thus practically eliminating the necessity for the Dijkshoorn-Ben Zioni recycling process.  相似文献   

18.
The influence of NO3 uptake and reduction on ionic balance in barley seedlings (Hordeum vulgare, cv. Compana) was studied. KNO3 and KCl treatment solutions were used for comparison of cation and anion uptake. The rate of Cl uptake was more rapid than the rate of NO3 uptake during the first 2 to 4 hours of treatment. There was an acceleration in rate of NO3 uptake after 4 hours resulting in a sustained rate of NO3 uptake which exceeded the rate of Cl uptake. The initial (2 to 4 hours) rate of K+ uptake appeared to be independent of the rate of anion uptake. After 4 hours the rate of K+ uptake was greater with the KNO3 treatment than with the KCl treatment, and the solution pH, cell sap pH, and organic acid levels with KNO3 increased, relative to those with the KCl treatment. When absorption experiments were conducted in darkness, K+ uptake from KNO3 did not exceed K+ uptake from KCl. We suggest that the greater uptake and accumulation of K+ in NO3-treated plants resulted from (a) a more rapid, sustained uptake and transport of NO3 providing a mobile counteranion for K+ transport, and (b) the synthesis of organic acids in response to NO3 reduction increasing the capacity for K+ accumulation by providing a source of nondiffusible organic anions.  相似文献   

19.
We tested a number of inhibitory monovalent anions for their primary site of action on photosystem II(PSII) in chloroplasts. We find that the inhibitory effects of F, HCO2, NO2, NO3, and CH3CO2 are all reversed by addition of a high concentration of HCO3. This class of anions competitively inhibits H14CO3 binding to PSII. All of those anions tested reduced H14CO3 binding more in the light than in the dark. We conclude that the primary inhibitory site of action of a number of monovalent anions is at the HCO3 binding site(s) on the PSII complex. The carbonic anhydrase inhibitor gold cyanide, and also azide, inhibit PSII but at a site other than the HCO3 binding site. We suggest that the unique ability of HCO3 to reverse the effects of inhibitory anions reflects its singular ability to act as a proton donor/acceptor at the anion binding site. A similar role has been proposed for non-substrate-bound HCO3 on carbonic anhydrase by Yeagle et al. (1975 Proc Natl Acad Sci USA 72: 454-458).  相似文献   

20.
Until recently, denitrification was thought to be the only significant pathway for N2 formation and, in turn, the removal of nitrogen in aquatic sediments. The discovery of anaerobic ammonium oxidation in the laboratory suggested that alternative metabolisms might be present in the environment. By using a combination of 15N-labeled NH4+, NO3, and NO2 (and 14N analogues), production of 29N2 and 30N2 was measured in anaerobic sediment slurries from six sites along the Thames estuary. The production of 29N2 in the presence of 15NH4+ and either 14NO3 or 14NO2 confirmed the presence of anaerobic ammonium oxidation, with the stoichiometry of the reaction indicating that the oxidation was coupled to the reduction of NO2. Anaerobic ammonium oxidation proceeded at equal rates via either the direct reduction of NO2 or indirect reduction, following the initial reduction of NO3. Whether NO2 was directly present at 800 μM or it accumulated at 3 to 20 μM (from the reduction of NO3), the rate of 29N2 formation was not affected, which suggested that anaerobic ammonium oxidation was saturated at low concentrations of NO2. We observed a shift in the significance of anaerobic ammonium oxidation to N2 formation relative to denitrification, from 8% near the head of the estuary to less than 1% at the coast. The relative importance of anaerobic ammonium oxidation was positively correlated (P < 0.05) with sediment organic content. This report of anaerobic ammonium oxidation in organically enriched estuarine sediments, though in contrast to a recent report on continental shelf sediments, confirms the presence of this novel metabolism in another aquatic sediment system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号