首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increasing oxygen from 5 to 95% has previously been shown to increase prostaglandin (PG) production in renal inner medullary slices. The possible role of oxidative phosphorylation in this process was investigated. The oxidative phosphorylation inhibitors, dinitrophenol (DNP), oligomycin, and cyanide were evaluted for their effects on PGE2 production and ATP levels. None of the inhibitors affected PGE2 synthesis, although they lowered ATP levels at the concentrations tested. In contrast, incubation of inner medullary tissue slices with 0% oxygen resulted in decreases both in PGE2 and ATP levels. This suggests that the effect of oxygen on prostaglandin synthesis may be due to substrate limiting effects rather than an effect on oxidative phosphorylation. When 22 mM 2-deoxyglucose was added to the incubation medium or when glucose was omitted, PGE2 levels increased. Sodium fluoride, presumably acting as a glycolytic inhibitor, increased PGE2 levels, with a maximal effect at 10 mM. ATP levels were 37% of control values with 20 mM NaF. This indicates that glucose may inhibit prostaglandin synthesis. These results indicate that oxygen (substrate) availability can limit inner medullary PGE2 production. In view of the low pO2 in the inner medulla, especially during antidiuresis, oxygen can potentially regulate prostaglandin production in this tissue.  相似文献   

2.
Increasing oxygen from 5 to 95% has previously been shown to increase prostaglandin (PG) production in renal inner medullary slices. The possible role of oxidative phosphorylation in this process was investigated. The oxidative phosphorylation inhibitors, dinitrophenol (DNP), oligomycin, and cyanide were evaluated for their effects on PGE2 production and ATP levels. None of the inhibitors affected PGE2 synthesis, although they lowered ATP levels at the concentrations tested. In contrast, incubation of inner medullary tissue slices with 0% oxygen resulted in decreases both in PGE2 and ATP levels. This suggest that the effect of oxygen on prostaglandin synthesis may be due to substrate limiting effects rather an effect on oxidative phosphorylation.When 22 mM 2-deoxyglucose was added to the incubation medium or when glucose was ommitted, PGE2 levels increased. Sodium fluoride, presumably acting as a glycolytic inhibitor, increased PGE2 levels, with a maximal effect at 10mM. ATP levels were 37% of control values with 20 mM NaF. This indicates that glucose may inhibit prostaglandin synthesis.These results indicate that oxygen (substrate) availability can limit inner medullary PGE2. In view of the low pO2 in the inner medulla, especially during antidiuresis, oxygen can potentially regulate prostaglandin productin in this tissue.  相似文献   

3.
Interleukin-1beta (IL-1beta) and interleukin-6 (IL-6) are produced by hepatic nonparenchymal cells after systemic injury and have been reported to inhibit ATP synthesis in hepatocytes, which may contribute to hepatic dysfunction in inflammatory states. To elucidate the mechanisms of action of IL-1beta and IL-6 on hepatocellular ATP synthesis, we measured the oxygen uptake rate (OUR) and mitochondrial membrane potential (MMP) of stable hepatocyte cultures, and analyzed the dynamic MMP response following the addition of mitochondrial inhibitors (antimycin A and oligomycin) with a model of mitochondrial metabolism. IL-1beta reduced mitochondrial OUR coupled to ATP synthesis via inhibition of phosphorylation reactions which dissipate the MMP, including ATP synthesis and consumption. Furthermore, the ATP synthesis rate in cytokine-free and IL-1beta-treated hepatocytes was controlled primarily by phosphorylation reactions, which corresponds to a state where the ATP synthesis rate closely follows the cellular energy demand. Thus, IL-1beta-mediated effects on electron transport and substrate oxidation reactions are not likely to significantly impact on ATP synthesis. IL-6 did not reduce mitochondrial OUR coupled to ATP synthesis, but shifted the control for ATP synthesis towards processes which generate the MMP, indicating that IL-6 induces a metabolic state where cellular functions are limited by the mitochondrial energy supply.  相似文献   

4.
In intact tissues respiratory substrates (glucose, fatty acids) must be activated with the use of ATP before they may be oxidised and used for energy (ATP) production. This activation by product constitutes an example of a typical positive feedback. In the present paper, the influence of substrate activation on the effect of inborn enzyme deficiencies, inhibitors, lowered oxygen tension, respiratory fuel shortage and increased energy demand on respiration and ATP synthesis is studied with the aid of the dynamic computer model of oxidative phosphorylation in isolated mitochondria developed previously. Computer simulations demonstrate that, in the case where oxidative phosphorylation in the whole organism is partially inhibited, the necessity of substrate activation can have significant impact on the relationship between the activity of (particular steps of) oxidative phosphorylation (or the value of energy demand) and the respiration rate. Depending on the sensitivity of ATP usage to ATP concentration, substrate activation may either slightly enhance the effect of the decrease in the oxidative phosphorylation activity (increase in energy demand) or may lead to a non-stability and sudden collapse of the respiration rate and phosphorylation potential below (above) a certain threshold value of oxidative phosphorylation activity (energy demand). This theoretical finding suggests a possible causal relationship between the affinity of ATP usage to [ATP] and the tissue specificity of mitochondrial diseases.  相似文献   

5.
The influence of oxygen tension on values of transmembrane potentials in rat liver cell was investigated. The membrane potential was assessed by the uptake TPP as was determined on the ion-selective electrode. Infusion of inhibitors oxidative phosphorylation and glycolysis to incubation medium caused depolarization on the mitochondrial, and, the plasma membranes of this cell. These and other experimental results suggest that there is an interaction between mitochondrial and cytosol pools of ATP, which determine steady-state values on transmembrane potential liver cell under hypoxia.  相似文献   

6.
To gain further insight into the biochemical properties of the antibacterial hexetidine, isolated rat liver mitochondria were added with this drug and investigation made of certain features related to mitochondrial bioenergetics. Hexetidine was found to cause oxidation of intramitochondrial pyridine nucleotides and stimulate the rate of oxygen uptake caused by respiratory substrates involving three, two and one site(s) of phosphorylation. Reversal of oxygen uptake inhibition by oligomycin was also determined. By investigating hexetidine effect on oxidative phosphorylation, hexetidine was found both to inhibit the rate of ATP synthesis and to cause ATP hydrolysis. Likewise, hexetidine capability to produce acidification of extramitochondrial medium and to collapse delta psi was also observed. The reported findings show that hexetidine exhibits uncoupling properties.  相似文献   

7.
When incubated with isolated intact rat liver mitochondria, novobiocin and nalidixic acid act as uncouplers of oxidative phosphorylation; they stimulate oxygen uptake and inhibit ATP synthesis. Novobiocin is about as powerful an uncoupler as is 2,4-dinitrophenol, nalidixic acid is somewhat less powerful, and oxolinic acid exerts no inhibition whatsoever at the concentrations used. The three inhibitors are without effect on oxidative phosphorylation in Escherichia coli nor does novobiocin affect this process in a novobiocin-permeable mutant of yeast. While it would appear that oxolinic acid may be a relatively specific tool for the manipulation of the superhelicity of DNA in complex systems such as mammalian mitochondria and intact mammalian cells, the specificity of each of these inhibitors may depend upon the particular conditions and species used and such experiments require adequate controls on oxidative phosphorylation.  相似文献   

8.
Thyroid status is crucial in energy homeostasis, but despite extensive studies the actual mechanism by which it regulates mitochondrial respiration and ATP synthesis is still unclear. We studied oxidative phosphorylation in both intact liver cells and isolated mitochondria from in vivo models of severe not life threatening hyper- and hypothyroidism. Thyroid status correlated with cellular and mitochondrial oxygen consumption rates as well as with maximal mitochondrial ATP production. Addition of a protonophoric uncoupler, 2,4-dinitrophenol, to hepatocytes did not mimic the cellular energetic change linked to hyperthyroidism. Mitochondrial content of cytochrome oxidase, ATP synthase, phosphate and adenine nucleotide carriers were increased in hyperthyroidism and decreased in hypothyroidism as compared to controls. As a result of these complex changes, the maximal rate of ATP synthesis increased in hyperthyroidism despite a decrease in ATP/O ratio, while in hypothyroidism ATP/O ratio increased but did not compensate for the flux limitation of oxidative phosphorylation. We conclude that energy homeostasis depends on a compromise between rate and efficiency, which is mainly regulated by thyroid hormones.  相似文献   

9.
Neuroblastoma is the most common extracranial solid tumour of infancy. Pathological activation of glucose consumption, glycolysis and glycolysis‐activating Akt kinase occur frequently in neuroblastoma cells, and these changes correlate with poor prognosis of patients. Therefore, several inhibitors of glucose utilization and the Akt kinase activity are in preclinical trials as potential anti‐cancer drugs. However, metabolic plasticity of cancer cells might undermine efficacy of this approach. In this work, we identified oxidative phosphorylation as compensatory mechanism preserving viability of neuroblastoma cells with inhibited glucose uptake/Akt kinase. It was oxidative phosphorylation that maintained intracellular level of ATP and proliferative capacity of these cells. The oxidative phosphorylation inhibitors (rotenone, tetrathiomolybdate) synergized with inhibitor of the Akt kinase/glucose uptake in down‐regulation of both viability of neuroblastoma cells and clonogenic potential of cells forming neuroblastoma spheroids. Interestingly, tetrathiomolybdate acted as highly specific inhibitor of oxygen consumption and activator of lactate production in neuroblastoma cells, but not in normal fibroblasts and neuronal cells. Moreover, the reducing effect of tetrathiomolybdate on cell viability and the level of ATP in the cells with inhibited Akt kinase/glucose uptake was also selective for neuroblastoma cells. Therefore, efficient elimination of neuroblastoma cells requires inhibition of both glucose uptake/Akt kinase and oxidative phosphorylation activities. The use of tetrathiomolybdate as a mitochondrial inhibitor contributes to selectivity of this combined treatment, preferentially targeting neuroblastoma cells.  相似文献   

10.
Mitochondria play important roles in animal apoptosis and are implicated in salicylic acid (SA)-induced plant resistance to viral pathogens. In a previous study, we demonstrated that SA induces rapid inhibition of mitochondrial electron transport and oxidative phosphorylation in tobacco cells. In the present study, we report that plant programmed cell death induced during pathogen elicitor-induced hypersensitive response (HR) is also associated with altered mitochondrial functions. Harpin, an HR elicitor produced by Erwinia amylovora, induced inhibition of ATP synthesis in tobacco cell cultures. Inhibition of ATP synthesis occurred almost immediately after incubation with harpin and preceded hypersensitive cell death induced by the elicitor. Diphenylene iodonium, an inhibitor of the oxidative burst, did not block harpin-induced inhibition of ATP synthesis or cell death, suggesting that oxidative burst was not the direct cause for these two harpin-induced processes. Unlike SA, harpin had no significant effect on total respiratory O2 uptake of treated cells. However, respiration of harpin-treated tobacco cells became very sensitive to the alternative oxidase inhibitors salicyl-hydroxamic acid and n-propyl gallate. Thus, harpin treatment resulted in reduced capacity of mitochondrial cytochrome pathway electron transport, which could lead to the observed inhibition of ATP synthesis. Given the recently demonstrated roles of mitochondria in apoptosis, this rapid inhibition of mitochondrial functions may play a role in harpin-induced hypersensitive cell death.  相似文献   

11.
The effect of calf blood extract (Solcoseryl, SS) on mitochondrial oxidative function in various states was studied polarographically in vitro. 1) Mitochondrial respiration in all 4 conventional study states (Estabrook, 1967) was enhanced by the addition of SS, including states 1 and 2 (endogenous substrates only). 2) The effect of SS on mitochondrial oxygen consumption was concentration dependent, while ADP/O ratio remained constant. The effect of added respiratory substrates varied with the particular substrate at optimally active concentrations. With suboptimal substrate levels, ADP/O ratios were concentration dependent, in contrast to the SS effect. Under oligomycin ATPase inhibition, SS was no longer active, in contrast to DNP, which remained active. 3) In states 3 (added ADP) and 4 (ADP exhausted), oxygen consumption and oxidative phosphorylation were enhanced by SS in the presence or absence of citrate, glutamate, pyruvate, lactate, or ascorbate. However, in the presence of succinate, SS had no effect. 4) ADP/O ratio was decreased by SS in the presence of added substrate, suggesting that SS activation of H(+)-ATPase enhances ATP hydrolysis as well as oxidative phosphorylation and ATP synthesis. 5) The enhancing effect of SS on mitochondrial function is due to hydrophilic components of SS. The lipidic components obtained by Folch fraction of SS have no effect. It is concluded that the effects of SS respiratory substrates and uncouplers on mitochondrial function are essentially different. SS enhances both ATP synthesis and oxygen consumption by mitochondria.  相似文献   

12.
1. The effects of various inhibitors of electron transport and of oxidative phosphorylation and the effects of ionophores on the uptake of native aspartate aminotransferase into mitochondria were investigated. 2. Both antimycin and cyanide completely inhibited the uptake of the enzyme. On the other hand, uptake was stimulated to ATP and by oligomycin; however, the stimulation by ATP is inhibited by oligomycin. 3. The effects of ionophores of the valinomycin type in media containing K+ ions depended on the conditions used. Valinomycin alone stimulated the uptake of the enzyme, but in the presence of phosphate ions uptake was abolished. Nonactin was without effect at a low K+ concentration, but was stimulatory at 100 mM-KCl. Gramicidin also stimulated the uptake process. 4. Nigericin completely abolished uptake of aspartate aminotransferase into mitochondria. 5. The uptake of te enzyme was decreased by 18% in the absence of inhibitors or ionophores when the external pH was increased from 6.9 to 7.6. 6. These results indicate that ATP is not directly involved in the uptake of aspartate aminotransferase into mitochondria, neither is there a requirement for a cation gradient. Rather the uptake depends on the maintenance of a pH gradient across the mitochondrial inner membrane.  相似文献   

13.
Inhibition of the mitochondrial electron transport chain (ETC) ultimately limits ATP production and depletes cellular ATP. However, the individual complexes of the ETC in brain mitochondria need to be inhibited by approximately 50% before causing significant depression of ATP synthesis. Moreover, the ETC is the key site for the production of intracellular reactive oxygen species (ROS) and inhibition of one or more of the complexes of the ETC may increase the rate of mitochondrial ROS generation. We asked whether partial inhibition of the ETC, to a degree insufficient to perturb oxidative phosphorylation, might nonetheless induce ROS production. Chronic increase in mitochondrial ROS might then cause oxidative damage to the ETC sufficient to produce prolonged changes in ETC function and so compound the defect. We show that the exposure of astrocytes in culture to low concentrations of nitric oxide (NO) induces an increased rate of O2*- generation that outlasts the presence of NO. No effect was seen on oxygen consumption, lactate or ATP content over the 4-6 h that the cells were exposed to NO. These data suggest that partial ETC inhibition by NO may initially cause oxidative stress rather than ATP depletion, and this may subsequently induce irreversible changes in ETC function providing the basis for a cycle of damage.  相似文献   

14.
The cytosolic factors that influence mitochondrial oxidative phosphorylation rates are relatively unknown. In this report, we examine the effects of phosphoenolpyruvate (PEP), a glycolytic intermediate, on mitochondrial function. It is reported here that in rat heart mitochondria, PEP delays the onset of state 3 respiration in mitochondria supplied with either NADH-linked substrates or succinate. However, the maximal rate of state 3 respiration is only inhibited when oxidative phosphorylation is supported by NADH-linked substrates. The capacity of PEP to delay and/or inhibit state 3 respiration is dependent upon the presence or absence of ATP. Inhibition of state 3 is exacerbated in uncoupled mitochondria, with a 40% decrease in respiration seen with 0.1mM PEP. In contrast, ATP added exogenously or produced by oxidative phosphorylation completely prevents PEP-mediated inhibition. Mechanistically, the results support the conclusion that the main effects of PEP are to impede ADP uptake and inhibit NADH oxidation. By altering the NADH/NAD(+) status of mitochondria, it is demonstrated that PEP enhances succinate dehydrogenase activity and increase free radical production. The results of this study indicate PEP may be an important modulator of mitochondrial function under conditions of decreased ATP.  相似文献   

15.
We investigated the hypothesis that birth-related pulmonary vasodilation is mediated in part by an increase in oxidative phosphorylation and ATP release in response to oxygen exposure at birth. Studies were done in fetal lambs to evaluate the independent effects of oxygen, lung distension alone, or lung distension accompanied by oxygenation and shear stress on fetal pulmonary blood flow and resistance and plasma ATP levels in the pulmonary artery. The effect of each intervention was evaluated in lambs assigned to one of three groups: control or pretreatment with 2,4-dinitrophenol or antimycin-A, inhibitors of oxidative phosphorylation. Exposure to oxygen alone or with lung distension was associated with increases in plasma ATP levels and pulmonary blood flow and a decrease in pulmonary vascular resistance. Plasma ATP levels did not change during lung distension alone. 2,4-Dinitrophenol and antimycin-A attenuated the pulmonary vasodilator response to oxygen but did not attenuate the response to lung distension alone. An increase in oxidative phosphorylation and ATP release during oxygen exposure may contribute to birth-related pulmonary vasodilation in fetal lambs.  相似文献   

16.
The infected cells of soybean (Glycine max) root nodules require ATP production for ammonia assimilation and purine synthesis under microaerobic conditions. It is likely that the bulk of this demand is supplied through mitochondrial oxidative phosphorylation. Mitochondria purified from root nodules respired and synthesized ATP in sub-micromolar oxygen concentrations as measured by leghaemoglobin spectroscopy and luciferase luminescence. Both oxygen uptake and the apparent ATP/O ratio declined significantly as the oxygen concentration fell below 100 μmol m?3. Cytochrome-pathway respiration by root nodule mitochondria had a higher apparent affinity for oxygen (Km 50 μmol m?3) than did mitochondria isolated from roots (Km 125 μmol m?3). Electron micrographs showed that mitochondria predominated at the periphery of infected cells adjacent to gas-filled intercellular spaces, where the oxygen concentration is predicted to be highest. Calculations of oxygen concentration and nitrogen fixation rates on an infected cell basis suggest that the measured rates of ATP production by isolated mitochondria are sufficient for the quantifiable in vivo requirements of ammonia assimilation and purine synthesis. The possible roles of mitochondrial respiration in the control of infected cell metabolism are also discussed.  相似文献   

17.
Durum wheat mitochondria (DWM) possess an ATP-inhibited K(+) channel, the plant mitoK(ATP) (PmitoK(ATP) ), which is activated under environmental stress to control mitochondrial ROS production. To do this, PmitoK(ATP) collapses membrane potential (ΔΨ), thus suggesting mitochondrial uncoupling. We tested this point by studying oxidative phosphorylation (OXPHOS) in DWM purified from control seedlings and from seedlings subjected both to severe mannitol and NaCl stress. In severely-stressed DWM, the ATP synthesis via OXPHOS, continuously monitored by a spectrophotometric assay, was about 90% inhibited when the PmitoK(ATP) was activated by KCl. Contrarily, in control DWM, although PmitoK(ATP) collapsed ΔΨ, ATP synthesis, as well as coupling [respiratory control (RC) ratio and ratio between phosphorylated ADP and reduced oxygen (ADP/O)] checked by oxygen uptake experiments, were unaffected. We suggest that PmitoK(ATP) may play an important defensive role at the onset of the environmental/oxidative stress by preserving energy in a crucial moment for cell and mitochondrial bioenergetics. Consistently, under moderate mannitol stress, miming an early stress condition, the channel may efficiently control reactive oxygen species (ROS) generation (about 35-fold from fully open to closed state) without impairing ATP synthesis. Anyway, if the stress significantly proceeds, the PmitoK(ATP) becomes fully activated by decrease of ATP concentration (25-40%) and increase of activators [free fatty acids (FFAs) and superoxide anion], thus impairing ATP synthesis.  相似文献   

18.
We report the first evidence of a mitochondrial NO synthase (mtNOS) in bird skeletal muscle. In vitro, mtNOS activity stimulated by l-arginine reduced intermyofibrillar mitochondrial oxygen uptake and ATP synthesis rates, stimulated endogenous H2O2 generation, but had no effect on oxidative phosphorylation efficiency. Arginine-induced effects were fully reversed by l-NAME, a known NOS inhibitor. When ducklings were cold exposed for 4 weeks, muscle mitochondria displayed an increased state 3 respiration, a reduced H2O2 generation but no significant alteration in mtNOS activity. We conclude that mtNOS is expressed in avian skeletal muscle.  相似文献   

19.
We are interested in the cytotoxic and proinflammatory effects of particulate pollutants in the respiratory tract. We demonstrate that methanol extracts made from diesel exhaust particles (DEP) induce apoptosis and reactive oxygen species (ROS) in pulmonary alveolar macrophages and RAW 264.7 cells. The toxicity of these organic extracts mimics the cytotoxicity of the intact particles and could be suppressed by the synthetic sulfhydryl compounds, N-acetylcysteine and bucillamine. Because DEP-induced apoptosis follows cytochrome c release, we studied the effect of DEP chemicals on mitochondrially regulated death mechanisms. Crude DEP extracts induced ROS production and perturbed mitochondrial function before and at the onset of apoptosis. This mitochondrial perturbation follows an orderly sequence of events, which commence with a change in mitochondrial membrane potential, followed by cytochrome c release, development of membrane asymmetry (annexin V staining), and propidium iodide uptake. Structural damage to the mitochondrial inner membrane, evidenced by a decrease in cardiolipin mass, leads to O-*2 generation and uncoupling of oxidative phosphorylation (decreased intracellular ATP levels). N-acetylcysteine reversed these mitochondrial effects and ROS production. Overexpression of the mitochondrial apoptosis regulator, Bcl-2, delayed but did not suppress apoptosis. Taken together, these results suggest that DEP chemicals induce apoptosis in macrophages via a toxic effect on mitochondria.  相似文献   

20.
Nitric oxide biosynthesis in cardiac muscle leads to a decreased oxygen consumption and lower ATP synthesis. It is suggested that this effect of nitric oxide is mainly due to the inhibition of the mitochondrial respiratory chain enzyme, cytochrome c oxidase. However, this work demonstrates that nitric oxide is able to inhibit soluble mitochondrial creatine kinase (CK), mitochondrial CK bound in purified mitochondria, CK in situ in skinned fibres as well as the functional activity of mitochondrial CK in situ in skinned fibres. Since mitochondrial isoenzyme is functionally coupled to oxidative phosphorylation, its inhibition also leads to decreased sensitivity of mitochondrial respiration to ADP and thus decreases ATP synthesis and oxygen consumption under physiological ADP concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号