首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enhanced DNA repair synthesis in hyperacetylated nucleosomes   总被引:10,自引:0,他引:10  
We have investigated the level of "early" DNA repair synthesis in nucleosome subpopulations, varying in histone acetylation, from normal human fibroblasts treated with sodium butyrate. We find that repair synthesis occurring during the first 30 min after UV irradiation is significantly enhanced in hyperacetylated mononucleosomes. Nucleosomes with an average of 2.3 acetyl residues/H4 molecule contained approximately 1.8-fold more repair synthesis than nucleosomes with an average of 1.5 or 1.0 acetyl residues/H4 molecule. Fractionation of highly acetylated nucleosomes by two-dimensional gel electrophoresis yielded an additional 2.0-fold enrichment of repair synthesis in nucleosomes containing 2.7 acetyl residues/H4 molecule as compared to nucleosomes containing 1.9 acetyl residues/H4 molecule. This enhanced repair synthesis is associated primarily with nucleosome core regions and does not appear to result from increased UV damage in hyperacetylated chromatin. In addition, the distribution of repair synthesis within nucleosome core DNA from hyperacetylated chromatin is nonrandom, showing a bias toward the 5' end which is similar to that obtained for bulk (unfractionated) chromatin. These results provide strong evidence that enhanced repair occurs within nucleosome cores of hyperacetylated chromatin in butyrate-treated human cells. Finally, pulse-chase experiments demonstrate that the association of enhanced repair synthesis with hyperacetylated nucleosomes is transient, lasting only about 12 h after UV damage.  相似文献   

2.
Hyperacetylated histones facilitate chromatin assembly in vitro.   总被引:6,自引:2,他引:4       下载免费PDF全文
We have examined the effect of histone acetylation on the in vitro assembly of nucleosomes with DNA and purified histones at physiological ionic strength in the presence of polyglutamic acid. We have found that hyperacetylated histones assemble nucleosomes with greater efficiency, and to a greater extent, than either control or hypoacetylated histones. Assembly reactions were performed over a range of histone to DNA ratios (0.25 to 3.0, w/w) and polyglutamic acid to histone ratios (0 to 1.6, w/w). Although polyglutamic acid may act as a sink to prevent nonspecific histone-DNA interactions, our data suggest that the polyanion primarily facilitates the assembly of nucleosomes by organizing histones into a form that is amenable to deposition.  相似文献   

3.
Histone acetylation reduces nucleosome core particle linking number change   总被引:28,自引:0,他引:28  
V G Norton  B S Imai  P Yau  E M Bradbury 《Cell》1989,57(3):449-457
Nucleosome core particles differing in their levels of histone acetylation have been formed on a closed circular DNA that contains a tandemly repeated 207 bp nucleosome positioning sequence. The effect of acetylation on the linking number per nucleosome particle has been determined. With increasing levels of acetylation, the negative linking number change per nucleosome decreases from -1.04 +/- 0.08 for control to -0.82 +/- 0.05 for highly acetylated nucleosomes. These results indicate that histone acetylation has the ability to release negative supercoils previously constrained by nucleosomes into a closed chromatin loop and in effect function as a eukaryotic gyrase.  相似文献   

4.
Using FRET in bulk and on single molecules, we assessed the structural role of histone acetylation in nucleosomes reconstituted on the 170 bp long Widom 601 sequence. We followed salt-induced nucleosome disassembly, using donor–acceptor pairs on the ends or in the internal part of the nucleosomal DNA, and on H2B histone for measuring H2A/H2B dimer exchange. This allowed us to distinguish the influence of acetylation on salt-induced DNA unwrapping at the entry–exit site from its effect on nucleosome core dissociation. The effect of lysine acetylation is not simply cumulative, but showed distinct histone-specificity. Both H3- and H4-acetylation enhance DNA unwrapping above physiological ionic strength; however, while H3-acetylation renders the nucleosome core more sensitive to salt-induced dissociation and to dimer exchange, H4-acetylation counteracts these effects. Thus, our data suggest, that H3- and H4-acetylation have partially opposing roles in regulating nucleosome architecture and that distinct aspects of nucleosome dynamics might be independently controlled by individual histones.  相似文献   

5.
6.
7.
A direct correlation exists between the level of histone H4 hyperacetylation induced by sodium butyrate and the extent to which nucleosomes lose their compact shape and become elongated (62.0% of the particles have a length/width ratio over 1.6; overall mean in the length/width ratio = 1.83 +/- 0.48) when bound to electron microscope specimen grids at low ionic strength (1mM EDTA, 10mM Tris, pH 8.0). A marked proportion of elongated core particles is also observed in the naturally occurring hyperacetylated chicken testis chromatin undergoing spermatogenesis when analyzed at low ionic strength (36.8% of the particles have a length/width ratio over 1.6). Core particles of elongated shape (length/width ratio over 1.6) generated under low ionic strength conditions are absent in the hypoacetylated chicken erythrocyte chromatin and represent only 2.3% of the untreated Hela S3 cell core particles containing a low proportion of hyperacetylated histones. The marked differences between control and hyperacetylated core particles are absent if the particles are bound to the carbon support film in the presence of 0.2 M NaCl, 6mM MgCl2 and 10mM Tris pH 8.0, conditions known to stabilize nucleosomes. A survey of the published work on histone hyperacetylation together with the present results indicate that histone hyperacetylation does not produce any marked disruption of the core particle 'per se', but that it decreases intranucleosomal stabilizing forces as judged by the lowered stability of the hyperacetylated core particle under conditions of shearing stress such as cationic competition by the carbon support film of the EM grid for DNA binding.  相似文献   

8.
9.
Concatameric sea urchin 5S rDNA templates reconstituted with histones provide very popular chromatin models for many kinds of in vitro studies. We have used AFM to characterize the locational aspects of nucleosome occupation on one such array, the 208-12, by determining the internucleosomal- and end-distance distributions for arrays reconstituted to various subsaturating levels with nonacetylated or hyperacetylated HeLa histones. A simulation analysis of the experimental distributions confirms the qualitative conclusions and provides quantitative parameter values for the identified features. For nonacetylated arrays, the end-distance data demonstrate the nucleosome positioning ability of the 5S sequence and detect an enhanced preference for nucleosomes to bind at DNA termini. The internucleosomal-distance data provide clear evidence for cooperativity in nucleosome location on these templates, detectable even at subsaturated loading levels. Hyperacetylated arrays show no change in the preference of nucleosomes to bind at termini and a slight change in nucleosome positioning behavior but, most strikingly, little or no evidence for cooperativity in nucleosome location. Thus, acetylation of the N-terminal histone tails abolishes the cooperativity.  相似文献   

10.
We have examined the effects of histone hyperacetylation upon nuclease digestion of nuclei and subsequent fractionation of chromosomal material in the presence of MgCl2. DNase I shows a maximum sensitivity towards hyperacetylated nuclei at somewhat elevated ionic strengths (150-200 mM NaCl), whereas micrococcal nuclease exhibits no specificity for acetylated nuclei over a broad range of ionic strengths. Fractionation in the presence of MgCl2 of hyperacetylated nuclei digested with micrococcal nuclease results in a substantial increase in the amount of soluble chromatin relative to that obtained with control nuclei. This increased yield of Mg2+-soluble chromatin results from the recruitment into this fraction of oligonucleosomes containing extremely hyperacetylated histones. These results suggest that contiguous nucleosomes containing highly acetylated histones may be altered in their ability to interact with themselves and with other nucleosomes.  相似文献   

11.
Effects of histone hyperacetylation on transitions of HeLa cell nucleosome core particles were studied. The transitions examined were induced by low salt concentrations, pH, temperature, and nondissociating high salt. Effects of salt dissociation were also examined. The low-salt transition was found to shift to higher ionic strength by approximately three fold for hyperacetylated particles, a change which may be due simply to the increased overall negative charge on the particles caused by acetylation of lysine residues. Some differences were also seen in the way in which core particles refold after exposure to very low salt (which induces a nonreversible change in the particles). Otherwise no significant effects of hyperacetylation were observed.  相似文献   

12.
A Stein  K Holley  J Zeliff  T Townsend 《Biochemistry》1985,24(7):1783-1790
Addition of core histones to chromatin or chromatin core particles at physiological ionic strength results in soluble nucleohistone complexes when polyglutamic acid is included in the sample. The interaction between nucleosomes and added core histones is strong enough to inhibit nucleosome formation on a closed circular DNA in the same solution. Complexes consisting of core particles and core histones run as discrete nucleoprotein particles on polyacrylamide gels. Consistent with the electrophoretic properties of these particles, protein cross-linking with dimethyl suberimidate indicates that added core histones are bound as excess octamers. Histones in the excess octamers do not exchange with nucleosomal core histones at an ionic strength of 0.1 M and can be selectively removed from core particles by incubating the complexes in a solution containing sufficient DNA. Under conditions where added histones are confined to the surface of chromatin, the excess histones are mobile and can migrate onto a contiguous extension of naked DNA and form nucleosomes.  相似文献   

13.
Histone H3 acetylation is induced by UV damage in yeast and may play an important role in regulating the repair of UV photolesions in nucleosome-loaded genomic loci. However, it remains elusive how H3 acetylation facilitates repair. We generated a strongly positioned nucleosome containing homogeneously acetylated H3 at Lys-14 (H3K14ac) and investigated possible mechanisms by which H3K14 acetylation modulates repair. We show that H3K14ac does not alter nucleosome unfolding dynamics or enhance the repair of UV-induced cyclobutane pyrimidine dimers by UV photolyase. Importantly, however, nucleosomes with H3K14ac have a higher affinity for purified chromatin remodeling complex RSC (Remodels the Structure of Chromatin) and show greater cyclobutane pyrimidine dimer repair compared with unacetylated nucleosomes. Our study indicates that, by anchoring RSC, H3K14 acetylation plays an important role in the unfolding of strongly positioned nucleosomes during repair of UV damage.  相似文献   

14.
Histone displaced in vitro from nuclei by protamine competition display a higher degree of hyperacetylation than the residual histones. In addition, hyperacetylated core particle pools are disassembled in vitro with a higher efficiency than control or nonacetylated core particles and when analyzed by electron microscopy display an elongated shape (length/width ratio = 1.52 +/- 0.19) instead of the round compact shape of control nucleosomes (length/width ratio = 1.06 +/- 0.06). In the absence of histone hyperacetylation, the fish protamines, salmine and iridine (32-33 residues), are relatively inefficient in disassembling nucleosomal core particles in vitro as compared to the large (65-70 residues), tyrosine-containing protamines from rooster (galline), squid, and cuttlefish which disassemble nucleosomes in a range of protamine concentrations close to physiological. The fact that an artificially cross-linked salmine dimer acquires the ability of the large protamines from rooster, squid, and cuttlefish to disassemble core particles in vitro and also binds more tightly to the DNA, suggests that the size of the sperm nuclear protamines is a critical factor in this process. Even when the core histones of spermatid chromatin are hyperacetylated in the trout testis, the replacement process by iridine or salmine is slow and time-dependent in vitro. However, since spermiogenesis in trout occurs over several weeks, the slow in vitro nucleosome disassembly process by salmine is sufficient to allow complete displacement, thus supporting the hypothesis that a protamine-mediated displacement of the histones from DNA in vivo may take place in the salmonid fishes by a mechanism similar to that in the rooster, squid, and cuttlefish.  相似文献   

15.
High levels of acetylation of lysines in the amino-terminal domains of all four core histones, H2A, H2B, H3, and H4, have been shown to reduce the linking number change per nucleosome core particle in reconstituted minichromosomes (Norton, V. G., Imai, B. S., Yau, P., and Bradbury, E. M. (1989) Cell 57, 449-457). Because there is evidence to suggest that the acetylations of H3 and H4 have functions that are distinct from those of H2A and H2B, we have determined the nucleosome core particle linking number change in minichromosomes containing fully acetylated H3 and H4 and very low levels of acetylation in H2A and H2B. This linking number change was -0.81 +/- 0.05, in close agreement with the linking number change for hyperacetylated nucleosome core particles which contain high levels of acetylation in all four core histones (approximately 70% of full acetylation in H3 and H4). Therefore, high levels of acetylation of H3 and H4 alone are responsible for the reduction in the linking number change per nucleosome core particle.  相似文献   

16.
17.
To examine the factors involved with nucleosome stability, we reconstituted nonacetylated particles containing various lengths (192, 162, and 152 base pairs) of DNA onto the Lytechinus variegatus nucleosome positioning sequence in the absence of linker histone. We characterized the particles and examined their thermal stability. DNA of less than chromatosome length (168 base pairs) produces particles with altered denaturation profiles, possibly caused by histone rearrangement in those core-like particles. We also examined the effects of tetra-acetylation of histone H4 on the thermal stability of reconstituted nucleosome particles. Tetra-acetylation of H4 reduces the nucleosome thermal stability by 0.8 degrees C as compared with nonacetylated particles. This difference is close to values published comparing bulk nonacetylated nucleosomes and core particles to ones enriched for core histone acetylation, suggesting that H4 acetylation has a dominant effect on nucleosome particle energetics.  相似文献   

18.
19.
The high mobility group box (HMGB) 1 protein, one of the most abundant nuclear non-histone proteins has been known for its inhibitory effect on repair of DNA damaged by the antitumor drug cisplatin. Here, we report the first results that link HMGB1 to repair of cisplatin-treated DNA at nucleosome level. Experiments were carried out with three types of reconstituted nucleosomes strongly positioned on the damaged DNA: linker DNA containing nucleosomes (centrally and end-positioned) and core particles. The highest repair synthesis was registered with end-positioned nucleosomes, two and three times more efficient than that with centrally positioned nucleosomes and core particles, respectively. HMGB1 inhibited repair of linker DNA containing nucleosomes more efficiently than that of core particles. Just the opposite was the effect of the in vivo acetylated HMGB1: stronger repair inhibition was obtained with core particles. No inhibition was observed with HMGB1 lacking the acidic tail. Binding of HMGB1 proteins to different nucleosomes was also analysed. HMGB1 bound preferentially to damage nucleosomes containing linker DNA, while the binding of the acetylated protein was linker independent. We show that both the repair of cisplatin-damaged nucleosomes and its inhibition by HMGB1 are nucleosome position-dependent events which are accomplished via the acidic tail and modulated by acetylation.  相似文献   

20.
Towards an understanding of the biological function of histone acetylation   总被引:10,自引:0,他引:10  
P Loidl 《FEBS letters》1988,227(2):91-95
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号