首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Our purpose was to demonstrate the ability of an actively controlled partial body weight support (PBWS) system to provide gait synchronized support during the stance period of a single lower extremity while examining the affect of such a support condition on gait asymmetry. Using an instrumented treadmill and a motion capture system, we compared gait parameters of twelve healthy elderly subjects (age 65-80 years) during unsupported walking to those while walking with 20% body weight support provided during only the stance period of the right limb. Specifically, we examined peak three-dimensional ground reaction force (GRF) data and the symmetry of lower extremity sagittal plane joint angles and of time and distance parameters. A reduction in all three GRF components was observed for the supported limb during modulated support. Reductions observed in the vertical GRF were comparable to the desired 20% support level. Additionally, GRF components examined for the unsupported limb during modulated support were consistently similar to those measured during unsupported walking. Modulated support caused statistically significant increases in asymmetry for knee flexion during stance (increased 5.9%), hip flexion during late swing (increased 9.1%), and the duration of single limb support (increased 2.8%). However, the observed increases were similar or considerably less than the natural variability in the asymmetry of these parameters during unsupported walking. The ability of the active PBWS device to provide unilateral support may offer new and possibly improved applications of PBWS rehabilitation for patients with unilateral walking deficits such as hemiparesis or orthopaedic injury.  相似文献   

2.
Background and Objectives: While body weight support (BWS) intonation is vital during conventional gait training of neurologically challenged subjects, it is important to evaluate its effect during robot assisted gait training. In the present research we have studied the effect of BWS intonation on muscle activities during robotic gait training using dynamic simulations. Methods: Two dimensional (2-D) musculoskeletal model of human gait was developed conjointly with another 2-D model of a robotic orthosis capable of actuating hip, knee and ankle joints simultaneously. The musculoskeletal model consists of eight major muscle groups namely; soleus (SOL), gastrocnemius (GAS), tibialis anterior (TA), hamstrings (HAM), vasti (VAS), gluteus maximus (GLU), uniarticular hip flexors (iliopsoas, IP), and Rectus Femoris (RF). BWS was provided at levels of 0, 20, 40 and 60% during the simulations. In order to obtain a feasible set of muscle activities during subsequent gait cycles, an inverse dynamics algorithm along with a quadratic minimization algorithm was implemented. Results: The dynamic parameters of the robot assisted human gait such as joint angle trajectories, ground contact force (GCF), human limb joint torques and robot induced torques at different levels of BWS were derived. The patterns of muscle activities at variable BWS were derived and analysed. For most part of the gait cycle (GC) the muscle activation patterns are quite similar for all levels of BWS as is apparent from the mean of muscle activities for the complete GC. Conclusions: Effect of BWS variation during robot assisted gait on muscle activities was studied by developing dynamic simulation. It is expected that the proposed dynamic simulation approach will provide important inferences and information about the muscle function variations consequent upon a change in BWS during robot assisted gait. This information shall be quite important while investigating the influence of BWS intonation on neuromuscular parameters of interest during robotic gait training.  相似文献   

3.
Numerous physiological and molecular changes accompany dietary restriction (DR), which has been a major impediment to elucidating the causal basis underlying DR's many health benefits. Two major metabolic responses to DR that potentially underlie many of these changes are the body temperature (T(b)) and body weight (BW) responses. These responses also represent an especially difficult challenge to uncouple during DR. We demonstrate in this study, using two recombinant inbred (RI) panels of mice (the LXS and LSXSS) that naturally occurring genetic variation serves as a powerful tool for modulating T(b) and BW independently during DR. The correlation coefficient between the two responses was essentially zero, with R = -0.04 in the LXS and -0.03 in the LSXSS, the latter averaged across replicate cohorts. This study is also the first to report that there is highly significant (P = 10(-10)) strain variation in the T(b) response to DR in the LXS (51 strains tested), with strain means ranging from 2 to 4 degrees C below normal. The results suggest that the strain variation in the T(b) response to DR is largely due to differences in the rate of heat loss rather than heat production (i.e., metabolic rate). This variation can thus be used to assess the long-term effects of lower T(b) independent of BW or metabolic rate, as well as independent of food intake and motor activity as previously shown. These results also suggest that murine genetic variation may be useful for uncoupling many more responses to DR.  相似文献   

4.
5.
Regulation of body weight by leptin   总被引:1,自引:0,他引:1  
  相似文献   

6.
In this study we describe an ambulatory system for estimation of spatio-temporal parameters during long periods of walking. This original method based on wavelet analysis is proposed to compute the values of temporal gait parameters from the angular velocity of lower limbs. Based on a mechanical model, the medio-lateral rotation of the lower limbs during stance and swing, the stride length and velocity are estimated by integration of the angular velocity. Measurement's accuracy was assessed using as a criterion standard the information provided by foot pressure sensors. To assess the accuracy of the method on a broad range of performance for each gait parameter, we gathered data from young and elderly subjects. No significant error was observed for toe-off detection, while a slight systematic delay (10 ms on average) existed between heelstrike obtained from gyroscopes and footswitch. There was no significant difference between actual spatial parameters (stride length and velocity) and their estimated values. Errors for velocity and stride length estimations were 0.06 m/s and 0.07 m, respectively. This system is light, portable, inexpensive and does not provoke any discomfort to subjects. It can be carried for long periods of time, thus providing new longitudinal information such as stride-to-stride variability of gait. Several clinical applications can be proposed such as outcome evaluation after total knee or hip replacement, external prosthesis adjustment for amputees, monitoring of rehabilitation progress, gait analysis in neurological diseases, and fall risk estimation in elderly.  相似文献   

7.
Conflicting results have been reported regarding the effect of the peroxisome proliferator-activated receptor-gamma-2 (PPARgamma2) Pro12Ala polymorphism, (singly or in combination with the silent C1431T polymorphism) on BMI. Gender-based dimorphism has been evidenced for genes that affect BMI, but few and conflicting data are available regarding PPARgamma2. We sought to investigate whether the Pro12Ala interacts with gender in modulating BMI in 566 nondiabetic unrelated white subjects (men:women = 211:355, age 36.59 +/- 11.85; BMI 25.36 +/- 4.53). In the whole study population, BMI, fasting glucose and insulin levels, and lipid profile were similar in Ala12 carriers (i.e., XA) and Pro/Pro homozygous subjects. Among the men, but not among the women, X/Ala individuals showed higher BMI (25.9 +/- 3.6 vs. 28.2 +/- 4.9, P = 0.006) and risk of obesity (odds ratio = 2.85, 95% confidence interval = 1.07-7.62). A significant gene-gender interaction in modulating BMI was observed (P = 0.039). Among the men, but not among the women, those carrying Ala-T haplotype (i.e., containing both Ala12 and T1431 variants) showed the highest BMI (haplo-score = 3.72, P = 0.0014). Our data indicate that in whites from Italy the PPARgamma2 Pro12Ala polymorphism interacts with gender in modulating BMI, thereby replicating some, but not all, earlier data obtained in different populations. Whether the PPARgamma2-gender interaction is a general phenomenon across different populations, is still an open question, the answer to which requires additional, specifically designed, studies.  相似文献   

8.
The use of body weight support (BWS) systems during locomotor retraining has become routine in clinical settings. BWS alters load receptor feedback, however, and may alter the biomechanical role of the ankle plantarflexors, influencing gait. The purpose of this study was to characterize the biomechanical adaptations that occur as a result of a change in limb load (controlled indirectly through BWS) and gait speed during treadmill locomotion. Fifteen unimpaired participants underwent gait analysis with surface electromyography while walking on an instrumented dual-belt treadmill at seven different speeds (ranging from 0.4 to 1.6 m/s) and three BWS conditions (ranging from 0% to 40% BWS). While walking, spatiotemporal measures, anterior/posterior ground reaction forces, and ankle kinetics and muscle activity were measured and compared between conditions. At slower gait speeds, propulsive forces and ankle kinetics were unaffected by changing BWS; however, at gait speeds ≥approximately 0.8 m/s, an increase in BWS yielded reduced propulsive forces and diminished ankle plantarflexor moments and powers. Muscle activity remained unaltered by changing BWS across all gait speeds. The use of BWS could provide the advantage of faster walking speeds with the same push-off forces as required of a slower speed. While the use of BWS at slower speeds does not appear to detrimentally affect gait, it may be important to reduce BWS as participants progress with training, to encourage maximal push-off forces. The reduction in plantarflexor kinetics at higher speeds suggests that the use of BWS in higher functioning individuals may impair the ability to relearn walking.  相似文献   

9.
Horses are often stabled in individual boxes, a method that does not meet their natural needs and may cause psychical and musculoskeletal diseases. This problem is particularly evident in Iceland, where horses often spend the long winter periods in cramped boxes. The aim of this study was to analyze the suitability of a group housing system in Iceland, but the results are also applicable to horses of other regions. Eight Icelandic horses were observed in an active stable system, and their behavior and time budget were recorded. Movement and lying behavior were studied with ALT (Activity, Lying, Temperature detection) pedometers. The effect of an automatic concentrate feeding station (CFS) on the horses’ behavior was examined. In the first period of investigation, the horses were fed concentrates manually, and in the second period, they were fed with the CFS. Additional behavioral observations and a determination of social hierarchy occurred directly or by video surveillance. The physical condition of the horses was recorded by body weight (BW) measurement and body condition scoring (BCS). The results showed a significant increase between the first and second trial periods in both the activity (P < 0.001) and the lying time (P = 0.003) of the horses with use of the CFS. However, there was no significant change in BW during the first period without the CFS (P = 0.884) or during the second period with the CFS (P = 0.540). The BCS of the horses was constant at a very good level during both trial periods, and the horses showed a low level of aggression, a firm social hierarchy and behavioral synchronization. This study concludes that group housing according to the active stable principle is a welfare-friendly option for keeping horses and is a suitable alternative to conventional individual boxes.  相似文献   

10.
Patients with knee OA show altered gait patterns, affecting their quality of living. The current study aimed to quantify the effects of bilateral knee OA on the intra-limb and inter-limb sharing of the support of the body during gait. Fifteen patients with mild, 15 with severe bilateral knee OA, and 15 healthy controls walked along a walkway while the kinematic and kinetic data were measured. Compared with the controls, the patients significantly reduced their knee extensor moments and the corresponding contributions to the total support moment in the sagittal plane (p<0.05). For compensation, the mild OA group significantly increased the hip extensor moments (p<0.05) to maintain close-to-normal support and a more symmetrical inter-limb load-sharing during double-limb support. The severe OA group involved compensatory actions of both the ankle and hip, but did not succeed in maintaining a normal sagittal total support moment during late stance, nor a symmetrical inter-limb load-sharing during double-limb support. In the frontal plane, the knee abductor moments and the corresponding contributions to the total support moment were not affected by the changes in the other joints, regardless of the severity of the disease. The observed compensatory changes suggest that strengthening of weak hip muscles is essential for body support during gait in patients with knee OA, but that training of weak ankle muscles may also be needed for patients with severe knee OA.  相似文献   

11.
Malate dehydrogenase from Escherichia coli is highly specific for the oxidation of malate to oxaloacetate. The technique of site-specific modulation has been used to alter the substrate binding site of this enzyme. Introduction of a cysteine in place of the active site binding residue arginine 153 results in a mutant enzyme with diminished catalytic activity, but with K(m) values for malate and oxaloacetate that are surprisingly unaffected. Reaction of this introduced cysteine with a series of amino acid analog reagents leads to the incorporation of a range of functional groups at the active site of malate dehydrogenase. The introduction of a positively charged group such as an amine or an amidine at this position results in improved affinity for several inhibitors over that observed with the native enzyme. However, the recovery of catalytic activity is less dramatic, with less than one third of the native activity achieved with the optimal reagents. These modified enzymes do have altered substrate specificity, with alpha-ketoglutarate and hydroxypyruvate no longer functioning as alternative substrates.  相似文献   

12.
Walking requires coordination of muscles to support the body during single stance. Impaired ability to coordinate muscles following stroke frequently compromises walking performance and results in extremely low walking speeds. Slow gait in post-stroke hemiparesis is further complicated by asymmetries in lower limb muscle excitations. The objectives of the current study were: (1) to compare the muscle coordination patterns of an individual with flexed stance limb posture secondary to post-stroke hemiparesis with that of healthy adults walking very slowly, and (2) to identify how paretic and non-paretic muscles provide support of the body center of mass in this individual. Simulations were generated based on the kinematics and kinetics of a stroke survivor walking at his self-selected speed (0.3 m/s) and of three speed-matched, healthy older individuals. For each simulation, muscle forces were perturbed to determine the muscles contributing most to body weight support (i.e., height of the center of mass during midstance). Differences in muscle excitations and midstance body configuration caused paretic and non-paretic ankle plantarflexors to contribute less to midstance support than in healthy slow gait. Excitation of paretic ankle dorsiflexors and knee flexors during stance opposed support and necessitated compensation by knee and hip extensors. During gait for an individual with post-stroke hemiparesis, adequate body weight support is provided via reorganized muscle coordination patterns of the paretic and non-paretic lower limbs relative to healthy slow gait.  相似文献   

13.
We applied a recently developed microrheology technique based on colloidal magnetic tweezers to measure local viscoelastic moduli and active forces in cells of Dictyostelium discoideum. The active transport of nonmagnetic beads taken up by phagocytosis was analyzed by single particle tracking, which allowed us to measure the length of straight steps and the corresponding velocities of the movements. The motion consists of a superposition of nearly straight long-range steps (step length in the micrometer range) and local random walks (step widths about 0.1 microm). The velocities for the former type of motion range from 1 to 3 microm/s. They decrease with increasing bead size and are attributed to rapid active transport along microtubuli. The short-range local motions exhibit velocities of less than 0.5 microm/s and reflect the internal dynamics of the cytoplasm. Viscoelastic response curves were measured by application of force pulses with amplitudes varying between 50 pN and 400 pN. Analysis of the response curves in terms of mechanical equivalent circuits yielded cytoplasmic viscosities varying between 10 and 350 Pa s. Simultaneous analysis of the response curves and of the bead trajectories showed that the motion of the beads is determined by the local yield stress within the cytoplasmic scaffold and cisternae, which varies between sigma = 30 Pa and 250 Pa. The motion of intracellular particles is interpreted in terms of viscoplastic behavior and the apparent viscosity is a measure of the reciprocal rate of bond breakage within the cytoplasmatic network. The viscoelastic moduli are interpreted as dynamic quantities which depend sensitively on the amplitude of the forces, and the rate of bond breakage is determined by the Arrhenius-Kramers law with the activation energy being reduced by the work performed by the applied force. In agreement with previous work, we provide evidence that the myosin II-deficient cells exhibit higher yield stresses, suggesting that the function of myosin II as a cross-linker is taken over by the other (non-active) cross-linkers.  相似文献   

14.
In order to investigate the effects of short road transport stress on total and free iodothyronines, body weight (BW), rectal temperature and heart rate (HR) changes, 126 healthy stallions were studied in basal conditions, before and after transport. A total of 60 Thoroughbred and 66 crossbred stallions aged 4 to 15 years with previous travelling experience were transported by road in a commercial trailer for a period of about 3 to 4 h (distance under 300 km). Blood samples and functional variables were collected in each horse box, one week before loading and transport in basal conditions (control samples), one week later immediately before loading (pre-samples) and again after transport and unloading (about 3 to 4 h) in each new horse box, within 30 min of their arrival at the breeding stations (post-samples). Compared to the before-transport values, increases in circulating T3, T4 and fT4 levels (P < 0.01) were observed after transport, irrespective of breed, but not for fT3 levels. Lower T4 and fT4 levels were observed in basal II (at 1100 h) (P < 0.01) than in basal I (at 0800 h) conditions and before transport. Thoroughbreds showed higher fT3 (P < 0.05) and fT4 (P < 0.01) levels after transport than crossbred stallions. No significant differences were observed for T3 and T4. Compared to the before-transport values, significant increases in rectal temperature (P < 0.01) and HR (P < 0.05) were observed after transport. No differences were observed between basal I, II and before values for functional variables. Significant correlations between T3 and rectal temperature, BW and HR were found. The results indicate that short road transport induces a preferential release of T3, T4 and fT4 hormones from the thyroid gland in relation to different breed, and an increase in rectal temperature and HR. No significant changes in BW were observed. No differences were observed in relation to different ages. The data obtained suggest that the stallion's thyroid hormones and functional variables may play an important role in assessing the effects of transport stress and a horse's coping strategy.  相似文献   

15.
16.
This study explored the effects of natural growth promoters (phytogenic feed additives and organic acids) on animal performance, carcass characteristics, blood parameters, gut microflora composition, and microbe–host interactions in broiler chickens over a 42-day feeding period. Two-hundred-fifty-day-old chicks were randomly assigned to one of five treatments: (i) control diets (CON); (ii) control diets + 40 g/tons antibiotic growth promoter (AB); (iii) control diets + 3 kg/tons organic acids (ORG); (iv) control diets + 3 kg/tons phytogenic feed additives (PHY); (v) control diets + 3 kg/tons organic acids + phytogenic feed additive combination (COM). A non-significant differences (p > 0.05) were observed in broiler performance among treatments at 21 days of age; however, a gradually increasing body weight gain and reduced feed conversion ratio were observed at 42 days in treatments versus control group. Biochemical indices were non-significant (p > 0.05) except for decreased cholesterol (p < 0.05) and increased A/G ratio (p < 0.05) recorded in the treatment groups. The addition of PHY and ORG improved total counts of Enterococcus spp. and Lactobacillus spp. (p < 0.05) as well as reduced caecal and ileal Campylobacter spp. and Escherichia coli (p < 0.05). Correlation analysis elucidated beneficial bacteria (Enterococcus spp. and Lactobacillus spp.) were positively and pathogenic bacteria (Campylobacter spp. and E. coli) were negatively correlated (p < 0.05) with host weight gain. The findings indicated that dietary supplementation of PHY and ORG sustained balanced gut microflora, which in turn improved body weight. This study broadens the significance of using PHY and ORG as safe alternatives to antibiotic growth promoters for achieving healthier and economical broiler production.  相似文献   

17.
18.
19.
Fall risk in elderly people is usually assessed using clinical tests. These tests consist in a subjective evaluation of gait performed by healthcare professionals, most of the time shortly after the first fall occurrence. We propose to complement this one-time, subjective evaluation, by a more quantitative analysis of the gait pattern using a Microsoft Kinect. To evaluate the potential of the Kinect sensor for such a quantitative gait analysis, we benchmarked its performance against that of a gold-standard motion capture system, namely the OptiTrack. The “Kinect” analysis relied on a home-made algorithm specifically developed for this sensor, whereas the OptiTrack analysis relied on the “built-in” OptiTrack algorithm. We measured different gait parameters as step length, step duration, cadence, and gait speed in twenty-five subjects, and compared the results respectively provided by the Kinect and OptiTrack systems. These comparisons were performed using Bland-Altman plot (95% bias and limits of agreement), percentage error, Spearman’s correlation coefficient, concordance correlation coefficient and intra-class correlation. The agreement between the measurements made with the two motion capture systems was very high, demonstrating that associated with the right algorithm, the Kinect is a very reliable and valuable tool to analyze gait. Importantly, the measured spatio-temporal parameters varied significantly between age groups, step length and gait speed proving the most effective discriminating parameters. Kinect-monitoring and quantitative gait pattern analysis could therefore be routinely used to complete subjective clinical evaluation in order to improve fall risk assessment during rehabilitation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号