首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We compared the codon usage of sequences of transposable elements (TEs) with that of host genes from the species Drosophila melanogaster, Arabidopsis thaliana, Caenorhabditis elegans, Saccharomyces cerevisiae, and Homo sapiens. Factorial correspondence analysis showed that, regardless of the base composition of the genome, the TEs differed from the genes of their host species by their AT-richness. In all species, the percentage of A + T on the third codon position of the TEs was higher than that on the first codon position and lower than that in the noncoding DNA of the genomes. This indicates that the codon choice is not simply the outcome of mutational bias but is also subject to selection constraints. A tendency toward higher A + T on the third position than on the first position was also found in the host genes of A. thaliana, C. elegans, and S. cerevisiae but not in those of D. melanogaster and H. sapiens. This strongly suggests that the AT choice is a host-independent characteristic common to all TEs. The codon usage of TEs generally appeared to be different from the mean of the host genes. In the AT-rich genomes of Arabidopsis thaliana, Caenorhabditis elegans, and Saccharomyces cerevisiae, the codon usage bias of TEs was similar to that of weakly expressed genes. In the GC-rich genome of D. melanogaster, however, the bias in codon usage of the TEs clearly differed from that of weakly expressed genes. These findings suggest that selection acts on TEs and that TEs may display specific behavior within the host genomes. Received: 2 May 2001 / Accepted: 29 October 2001  相似文献   

2.
C Gao  M Xiao  X Ren  A Hayward  J Yin  L Wu  D Fu  J Li 《Genomics》2012,100(4):222-230
The movement of transposable elements (TE) in eukaryotic genomes can often result in the occurrence of nested TEs (the insertion of TEs into pre-existing TEs). We performed a general TE assessment using available databases to detect nested TEs and analyze their characteristics and putative functions in eukaryote genomes. A total of 802 TEs were found to be inserted into 690 host TEs from a total number of 11,329 TEs. We reveal that repetitive sequences are associated with an increased occurrence of nested TEs and sequence biased of TE insertion. A high proportion of the genes which were associated with nested TEs are predicted to localize to organelles and participate in nucleic acid and protein binding. Many of these function in metabolic processes, and encode important enzymes for transposition and integration. Therefore, nested TEs in eukaryotic genomes may negatively influence genome expansion, and enrich the diversity of gene expression or regulation.  相似文献   

3.

Transposable elements (TEs) have long been considered junk DNA; however, the availability of genome sequences and the growth of omics databases have accelerated the study of TEs, and they are now considered evolutionary signatures. TEs, essential genetic elements in plant genomes, can move around the genome by either “cut-paste” (DNA transposons) or “copypaste” mechanisms (RNA transposons). TEs often affect host genome size and interact with host genes, resulting in altered gene expression and regulatory networks. Several genes have been identified to be influenced/modified by the action of TEs. TEs have diverse structures and functions. Plants are capable of using TEs as promoters and enhancers to drive epigenetic mechanisms in a tissue-specific manner. However, our knowledge about TEs remains poor despite extensive research in plants. Plant physiological functions associated with TEs have been challenging to analyse due to a lack of focused research. Another limitation is the lack of sufficient genetic information. The different functions displayed by plant genomes are genetically regulated, which opens up opportunities in areas such as genomic evolution and epigenetic modification. Indeed, understanding the contribution of TEs in the plant genome is indispensable to assess the diversity of evolutionary adaptability in plant taxa. In this study, we review the applications of TEs and discuss the value of genetic information in the plant genome. Genomic information about TEs has a significant value in high throughput research, including forward and reverse genetics. We discuss current strategies in using TEs for the genetic dissection of plant genomes. This review covers opportunities to use different TEs databases to increase the productivity of economically important plants for sustainable development

  相似文献   

4.
5.
6.
Pack-TYPE transposable elements (TEs) are a group of non-autonomous DNA transposons found in plants. These elements can efficiently capture and shuffle coding DNA across the host genome, accelerating the evolution of genes. Despite their relevance for plant genome plasticity, the detection and study of Pack-TYPE TEs are challenging due to the high similarity these elements have with genes. Here, we produced an automated annotation pipeline designed to study Pack-TYPE elements and used it to successfully annotate and analyse more than 10,000 new Pack-TYPE TEs in the rice and maize genomes. Our analysis indicates that Pack-TYPE TEs are an abundant and heterogeneous group of elements. We found that these elements are associated with all main superfamilies of Class II DNA transposons in plants and likely share a similar mechanism to capture new chromosomal DNA sequences. Furthermore, we report examples of the direct contribution of these TEs to coding genes, suggesting a generalised and extensive role of Pack-TYPE TEs in plant genome evolution.  相似文献   

7.
Fablet M  Rebollo R  Biémont C  Vieira C 《Gene》2007,390(1-2):84-91
It has now been established that transposable elements (TEs) make up a variable, but significant proportion of the genomes of all organisms, from Bacteria to Vertebrates. However, in addition to their quantitative importance, there is increasing evidence that TEs also play a functional role within the genome. In particular, TE regulatory regions can be viewed as a large pool of potential promoter sequences for host genes. Studying the evolution of regulatory region of TEs in different genomic contexts is therefore a fundamental aspect of understanding how a genome works. In this paper, we first briefly describe what is currently known about the regulation of TE copy number and activity in genomes, and then focus on TE regulatory regions and their evolution. We restrict ourselves to retrotransposons, which are the most abundant class of eukaryotic TEs, and analyze their evolution and the subsequent consequences for host genomes. Particular attention is paid to much-studied representatives of the Vertebrates and Invertebrates, Homo sapiens and Drosophila melanogaster, respectively, for which high quality sequenced genomes are available.  相似文献   

8.
果蝇转座因子对基因组进化的影响   总被引:2,自引:0,他引:2  
真核生物基因组织有很多可移动DNA片段为称转座因子,果蝇是大量系统研究的最好实验材料之一,其基因组的10%-12%是由转座因子组成,在宿主中,TEs也许改变基因表达模型,也许改变ORFs编码序列,也许对细胞功能产生影响,这此因子遗传的可动性也可能使它们适于建造载体产生转基因生物。因此,对TEs进化的动态研究以及对宿主基因组进化影响的探索将有助于TEs作为载体的细胞工程研究。  相似文献   

9.

Background

Cochliobolus heterostrophus is a dothideomycete that causes Southern Corn Leaf Blight disease. There are two races, race O and race T that differ by the absence (race O) and presence (race T) of ~ 1.2-Mb of DNA encoding genes responsible for the production of T-toxin, which makes race T much more virulent than race O. The presence of repetitive elements in fungal genomes is considered to be an important source of genetic variability between different species.

Results

A detailed analysis of class I and II TEs identified in the near complete genome sequence of race O was performed. In total in race O, 12 new families of transposons were identified. In silico evidence of recent activity was found for many of the transposons and analyses of expressed sequence tags (ESTs) demonstrated that these elements were actively transcribed. Various potentially active TEs were found near coding regions and may modify the expression and structure of these genes by acting as ectopic recombination sites. Transposons were found on scaffolds carrying polyketide synthase encoding genes, responsible for production of T-toxin in race T. Strong evidence of ectopic recombination was found, demonstrating that TEs can play an important role in the modulation of genome architecture of this species. The Repeat Induced Point mutation (RIP) silencing mechanism was shown to have high specificity in C. heterostrophus, acting only on transposons near coding regions.

Conclusions

New families of transposons were identified. In C. heterostrophus, the RIP silencing mechanism is efficient and selective. The co-localization of effector genes and TEs, therefore, exposes those genes to high rates of point mutations. This may accelerate the rate of evolution of these genes, providing a potential advantage for the host. Additionally, it was shown that ectopic recombination promoted by TEs appears to be the major event in the genome reorganization of this species and that a large number of elements are still potentially active. So, this study provides information about the potential impact of TEs on the evolution of C. heterostrophus.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-536) contains supplementary material, which is available to authorized users.  相似文献   

10.
11.
Transposable elements (TEs) are powerful mutagenic agents responsible for generating variation in the host genome. As TEs can be overtly deleterious, a variety of different mechanisms have evolved to keep their activities in check. In plants, fungi, and animals, RNA silencing has been implicated as a major defense against repetitive element transposition. This nucleic acid-based defense mechanism also appears to be directed at inherited silencing of TEs without altering the underlying DNA sequence. Complex interactions between TEs and RNA silencing machineries have been co-opted to regulate cellular genes.  相似文献   

12.
Distribution of transposable elements in prokaryotes   总被引:5,自引:0,他引:5  
We consider models for the distribution of the number of elements per host genome for families of transposable elements (TEs). The hosts are assumed to be prokaryotes. These models assume a constant rate of infection of uninfected hosts by TEs, replicative transposition within each host, and a reduction of the fitness of a host dependent on the number of TEs it contains. No provision was made for the deletion of individual TEs within a host or for recombination, since both are relatively rare events in prokaryotes. These models mostly assume that the TE performs no function for the host, and that the reduction in fitness with increased copy number is due to effects such as the impairment of beneficial genes by transposition or homologous recombination. We also consider a model in which the TEs can convey a selective advantage to the host. The equilibrium distributions of copy number are determined for these models, and are of a variety of classical types. Relevant parameters of the models are estimated using data on the distribution of insertion sequences in natural isolates of Escherichia coli.  相似文献   

13.
Transposable element (TE) mobilization is a constant threat to genome integrity. Eukaryotic organisms have evolved robust defensive mechanisms to suppress their activity, yet TEs can escape suppression and proliferate, creating strong selective pressure for host defense to adapt. This genomic conflict fuels a never-ending arms race that drives the rapid evolution of TEs and recurrent positive selection of genes involved in host defense; the latter has been shown to contribute to postzygotic hybrid incompatibility. However, how TE proliferation impacts genome and regulatory divergence remains poorly understood. Here, we report the highly complete and contiguous (N50 = 33.8–38.0 Mb) genome assemblies of seven closely related Drosophila species that belong to the nasuta species group—a poorly studied group of flies that radiated in the last 2 My. We constructed a high-quality de novo TE library and gathered germline RNA-seq data, which allowed us to comprehensively annotate and compare TE insertion patterns between the species, and infer the evolutionary forces controlling their spread. We find a strong negative association between TE insertion frequency and expression of genes nearby; this likely reflects survivor bias from reduced fitness impact of TEs inserting near lowly expressed, nonessential genes, with limited TE-induced epigenetic silencing. Phylogenetic analyses of insertions of 147 TE families reveal that 53% of them show recent amplification in at least one species. The most highly amplified TE is a nonautonomous DNA element (Drosophila INterspersed Element; DINE) which has gone through multiple bouts of expansions with thousands of full-length copies littered throughout each genome. Across all TEs, we find that TEs expansions are significantly associated with high expression in the expanded species consistent with suppression escape. Thus, whereas horizontal transfer followed by the invasion of a naïve genome has been highlighted to explain the long-term survival of TEs, our analysis suggests that evasion of host suppression of resident TEs is a major strategy to persist over evolutionary times. Altogether, our results shed light on the heterogenous and context-dependent nature in which TEs affect gene regulation and the dynamics of rampant TE proliferation amidst a recently radiated species group.  相似文献   

14.
15.
Lerat E  Sémon M 《Gene》2007,396(2):303-311
Transposable elements (TEs) are genomic sequences able to replicate themselves, and to move from one chromosomal position to another within the genome. Many TEs contain their own regulatory regions, which means that they may influence the expression of neighboring genes. TEs may also be activated and transcribed in various cancers. We therefore tested whether gene expression in normal and tumor tissues is influenced by the neighboring TEs. To do this, we associated all human genes to the nearest TEs. We analyzed the expression of these genes in normal and tumor tissues using SAGE and EST data, and related this to the presence and type of TEs in their vicinity. We confirmed that TEs tend to be located in antisense orientation relative to their hosting genes. We found that the average number of tissues where a gene is expressed varies depending on the type of TEs located near the gene, and that the difference in expression level between normal and tumor tissues is greatest for genes that host SINE elements. This deregulation increases with the number of SINE copies in the gene vicinity. This suggests that SINE elements might contribute to the cascade of gene deregulation in cancer cells.  相似文献   

16.
Transposable elements (TEs) are considered to be genomic parasites and their interactions with their hosts have been likened to the coevolution between host and other nongenomic, horizontally transferred pathogens. TE families, however, are vertically inherited as integral segments of the nuclear genome. This transmission strategy has been suggested to weaken the selective benefits of host alleles repressing the transposition of specific TE variants. On the other hand, the elevated rates of TE transposition and high incidences of deleterious mutations observed during the rare cases of horizontal transfers of TE families between species could create at least a transient process analogous to the influence of horizontally transmitted pathogens. Here, we formally address this analogy, using empirical and theoretical analysis to specify the mechanism of how host–TE interactions may drive the evolution of host genes. We found that host TE-interacting genes actually have more pervasive evidence of adaptive evolution than immunity genes that interact with nongenomic pathogens in Drosophila. Yet, both our theoretical modeling and empirical observations comparing Drosophila melanogaster populations before and after the horizontal transfer of P elements, which invaded D. melanogaster early last century, demonstrated that horizontally transferred TEs have only a limited influence on host TE-interacting genes. We propose that the more prevalent and constant interaction with multiple vertically transmitted TE families may instead be the main force driving the fast evolution of TE-interacting genes, which is fundamentally different from the gene-for-gene interaction of host–pathogen coevolution.  相似文献   

17.
The numerous discovered cases of domesticated transposable element (TE) proteins led to the recognition that TEs are a significant source of evolutionary innovation. However, much less is known about the reverse process, whether and to what degree the evolution of TEs is influenced by the genome of their hosts. We addressed this issue by searching for cases of incorporation of host genes into the sequence of TEs and examined the systems-level properties of these genes using the Saccharomyces cerevisiae and Drosophila melanogaster genomes. We identified 51 cases where the evolutionary scenario was the incorporation of a host gene fragment into a TE consensus sequence, and we show that both the yeast and fly homologues of the incorporated protein sequences have central positions in the cellular networks. An analysis of selective pressure (Ka/Ks ratio) detected significant selection in 37% of the cases. Recent research on retrovirus-host interactions shows that virus proteins preferentially target hubs of the host interaction networks enabling them to take over the host cell using only a few proteins. We propose that TEs face a similar evolutionary pressure to evolve proteins with high interacting capacities and take some of the necessary protein domains directly from their hosts.  相似文献   

18.
Spontaneous mutations in Drosophila melanogaster are related mainly to transposable elements (TEs). They are caused by both migration of TEs over the genome (transpositions) and the ability of TEs to induce chromosomal mutations. Migration of DNA transposons is accompanied by formation of double-strand DNA breaks (DSBs), which are repaired by host repair systems encoded by genes for recombination repair. We relied on this notion to develop a combined approach to the investigation of the type of DNA breaks accompanying transpositions; investigation of systems involved in DSB repair; and detection of repair genes, whose products were involved in repair of DNA breaks induced by TE transposition. The approach is based on the combination of experimental insertional mutagenesis systems and genetic environment deficient for enzymes of the repair system in a single genome. The main advantages of this approach are versatility, wide applicability, and simple design.  相似文献   

19.
A detailed comparison was made of codon usage of chloroplast genes with their host (nuclear) genes in the four angiosperm speciesOryza sativa, Zea mays, Triticum aestivum andArabidopsis thaliana. The average GC content of the entire genes, and at the three codon positions individually, was higher in nuclear than in chloroplast genes, suggesting different genomic organization and mutation pressures in nuclear and chloroplast genes. The results of Nc-plots and neutrality plots suggested that nucleotide compositional constraint had a large contribution to codon usage bias of nuclear genes inO. sativa, Z. mays, andT. aestivum, whereas natural selection was likely to be playing a large role in codon usage bias in chloroplast genomes. Correspondence analysis and chi-test showed that regardless of the genomic environment (species) of the host, the codon usage pattern of chloroplast genes differed from nuclear genes of their host species by their AU-richness. All the chloroplast genomes have predominantly A- and/or U-ending codons, whereas nuclear genomes have G-, C- or U-ending codons as their optimal codons. These findings suggest that the chloroplast genome might display particular characteristics of codon usage that are different from its host nuclear genome. However, one feature common to both chloroplast and nuclear genomes in this study was that pyrimidines were found more frequently than purines at the synonymous codon position of optimal codons.  相似文献   

20.
Recent genome sequencing efforts have revealed how extensively transposable elements (TEs) have contributed to the shaping of present day plant genomes. DNA transposons associate preferentially with the euchromatic or genic component of plant genomes and have had the opportunity to interact intimately with the genes of the plant host. These interactions have resulted in TEs acquiring host sequences, forming chimeric genes through exon shuffling, replacing regulatory sequences, mobilizing genes around the genome, and contributing genes to the host. The close interaction of transposons with genes has also led to the evolution of intricate cellular mechanisms for silencing transposon activity. Transposons have thus become important subjects of study in understanding epigenetic regulation and, in cases where transposons have amplified to high numbers, how to escape that regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号