首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many dynamical networks, such as the ones that produce the collective behavior of social insects, operate without any central control, instead arising from local interactions among individuals. A well-studied example is the formation of recruitment trails in ant colonies, but many ant species do not use pheromone trails. We present a model of the regulation of foraging by harvester ant (Pogonomyrmex barbatus) colonies. This species forages for scattered seeds that one ant can retrieve on its own, so there is no need for spatial information such as pheromone trails that lead ants to specific locations. Previous work shows that colony foraging activity, the rate at which ants go out to search individually for seeds, is regulated in response to current food availability throughout the colony's foraging area. Ants use the rate of brief antennal contacts inside the nest between foragers returning with food and outgoing foragers available to leave the nest on the next foraging trip. Here we present a feedback-based algorithm that captures the main features of data from field experiments in which the rate of returning foragers was manipulated. The algorithm draws on our finding that the distribution of intervals between successive ants returning to the nest is a Poisson process. We fitted the parameter that estimates the effect of each returning forager on the rate at which outgoing foragers leave the nest. We found that correlations between observed rates of returning foragers and simulated rates of outgoing foragers, using our model, were similar to those in the data. Our simple stochastic model shows how the regulation of ant colony foraging can operate without spatial information, describing a process at the level of individual ants that predicts the overall foraging activity of the colony.  相似文献   

2.
Crowd behaviors can have large fitness consequences for social organisms. Here we ask if there are similarities in the crowd dynamics of organisms that differ in body size, manner of locomotion, cognitive abilities, and state of alarm. Existing models of human crowd behavior have not been tested for their generality across species and body size nor across routine and emergency movements. We explore this issue by comparing the traffic dynamics of humans and of Argentine ants (Linepithema humile) to the predictions of our own model which was designed to simulate pedestrian movement. Some parameter values in the model were directly measured on ants but others were allometrically scaled from the human values to ant values based on the body mass difference. The model, with appropriately scaled parameters, correctly predicted two important properties of crowd behaviour for both organisms in a variety of circumstances: the flow rates and the distribution of time headways between successive ants in the escape sequence. The ability of a model of human pedestrian dynamics to predict behaviours of ant aggregations through allometric scaling of some parameter values suggests that there are fundamental features of crowd behavior that transcend the biological idiosyncrasies of the organisms involved.  相似文献   

3.
Biotic interactions are often important in the establishment and spread of invasive species. In particular, competition between introduced and native species can strongly influence the distribution and spread of exotic species and in some cases competition among introduced species can be important. The Caribbean crazy ant, Nylanderia fulva, was recently introduced to the Gulf Coast of Texas, and appears to be spreading inland. It has been hypothesized that competition with the red imported fire ant, Solenopsis invicta, may be an important factor in the spread of crazy ants. We investigated the potential of interspecific competition among these two introduced ants by measuring interspecific aggression between Caribbean crazy ant workers and workers of Solenopsis invicta. Specifically, we examined the effect of body size and diet on individual-level aggressive interactions among crazy ant workers and fire ants. We found that differences in diet did not alter interactions between crazy ant workers from different nests, but carbohydrate level did play an important role in antagonistic interactions with fire ants: crazy ants on low sugar diets were more aggressive and less likely to be killed in aggressive encounters with fire ants. We found that large fire ants engaged in fewer fights with crazy ants than small fire ants, but fire ant size affected neither fire ant nor crazy ant mortality. Overall, crazy ants experienced higher mortality than fire ants after aggressive encounters. Our findings suggest that fire ant workers might outcompete crazy ant workers on an individual level, providing some biotic resistance to crazy ant range expansion. However, this resistance may be overcome by crazy ants that have a restricted sugar intake, which may occur when crazy ants are excluded from resources by fire ants.  相似文献   

4.
Ants build a trail that leads to a new location when they move their colony. The trail’s traffic flows smoothly, regardless of the density on the trail. To the best of our knowledge, such a phenomenon has been reported only for ant species. The trail’s capacity is known as trail traffic flow. In this paper, we propose a probabilistic model of trail traffic flow, which overcomes some inadequacies of the kinetic model previously proposed in the literature. Our model answers a question unsolved by the previous model, namely, how many worker ants form such a density-independent trail. We focus on ants’ responses to mutual contacts that involve individuals in trail formation. We propose a model in which contact frequency predicts the number of worker ants that form a trail. We verify that our model’s estimates match the empirical data that ant experts reported in the literature. In modeling and evaluation, we discuss an intelligent ant species, the house-hunting ant Temnothorax albipennis, which is popular among the ant experts.  相似文献   

5.
To study the rules of ant behavior and group-formation phenomena, we examined the behaviors of Camponotus japonicus, a species of large ant, in a range of situations. For these experiments, ants were placed inside a rectangular chamber with a single exit that also contained a filter paper soaked in citronella oil, a powerful repellent. The ants formed several groups as they moved toward the exit to escape. We measured the time intervals between individual escapes in six versions of the experiment, each containing an exit of a different width, to quantify the movement of the groups. As the ants exited the chamber, the time intervals between individual escapes changed and the frequency distribution of the time intervals exhibited exponential decay. We also investigated the relationship between the number of ants in a group and the group flow rate.  相似文献   

6.
The foraging behaviour of social insects is highly flexible because it depends on the interplay between individual and collective decisions. In ants that use foraging trails, high ant flow may entail traffic problems if different workers vary widely in their walking speed. Slow ants carrying extra‐large loads in the leaf‐cutting ant Atta cephalotes L. (Hymenoptera: Formicidae) are characterized as ‘highly‐laden’ ants, and their effect on delaying other laden ants is analyzed. Highly‐laden ants carry loads that are 100% larger and show a 50% greater load‐carrying capacity (i.e. load size/body size) than ‘ordinary‐laden’ ants. Field manipulations reveal that these slow ants carrying extra‐large loads can reduce the walking speed of the laden ants behind them by up to 50%. Moreover, the percentage of highly‐laden ants decreases at high ant flow. Because the delaying effect of highly‐laden ants on nest‐mates is enhanced at high traffic levels, these results suggest that load size might be adjusted to reduce the negative effect on the rate of foraging input to the colony. Several causes have been proposed to explain why leaf‐cutting ants cut and carry leaf fragments of sizes below their individual capacities. The avoidance of delay in laden nest‐mates is suggested as another novel factor related to traffic flow that also might affect load size selection The results of the presennt study illustrate how leaf‐cutting ants are able to reduce their individual carrying performance to maximize the overall colony performance.  相似文献   

7.
David A. Holway 《Oecologia》1998,115(1-2):206-212
Predicting the success of biological invasions is a major goal of invasion biology. Determining the causes of invasions, however, can be difficult, owing to the complexity and spatio-temporal heterogeneity of the invasion process. The purpose of this study was to assess factors influencing rate of invasion for the Argentine ant (Linepithema humile), a widespread invasive species. The rate of invasion for 20 independent Argentine ant populations was measured over 4 years in riparian woodlands in the lower Sacramento River Valley of northern California. A priori predictors of rate of invasion included stream flow (a measure of abiotic suitability), disturbance, and native ant richness. In addition, baits were used to estimate the abundance of Argentine ants and native ants at the 20 sites. A multiple regression model accounted for nearly half of the variation in mean rate of invasion (R 2 = 0.46), but stream flow was the only significant factor in this analysis. Argentine ants spread, on average, 16 m year−1 at sites with permanent stream flow and retreated, on average, −6 m year−1 at sites with intermittent stream flow. Rate of invasion was independent of both disturbance and native ant richness. Argentine ants recruited to more baits in higher numbers in invaded areas than did native ants in uninvaded areas. In addition, rate of invasion was positively correlated with the proportion of baits recruited to by native ants in uninvaded areas. Together, these findings suggest that abiotic suitability is of paramount importance in determining rate of invasion for the Argentine ant. Received: 16 September 1997 / Accepted: 8 February 1998  相似文献   

8.
Batesian mimics typically dupe visual predators by resembling noxious or deadly model species. Ants are unpalatable and dangerous to many arthropod taxa, and are popular invertebrate models in mimicry studies. Ant mimicry by spiders, especially jumping spiders, has been studied and researchers have examined whether visual predators can distinguish between the ant model, spider mimic and spider non‐mimics. Tropical habitats harbour a diverse community of ants, their mimics and predators. In one such tripartite mimicry system, we investigated the response of an invertebrate visual predator, the ant‐mimicking praying mantis (Euantissa pulchra), to two related ant‐mimicking spider prey of the genus Myrmarachne, each closely mimicking its model ant species. We found that weaver ants (Oecophylla smaragdina) were much more aggressive than carpenter ants (Camponotus sericeus) towards the mantis. Additionally, mantids exhibited the same aversive response towards ants and their mimics. More importantly, mantids approached carpenter ant‐mimicking spiders significantly more than often that they approached weaver ant‐mimicking spiders. Thus, in this study, we show that an invertebrate predator, the praying mantis, can indeed discriminate between two closely related mimetic prey. The exact mechanism of the discrimination remains to be tested, but it is likely to depend on the level of mimetic accuracy by the spiders and on the aggressiveness of the ant model organism.  相似文献   

9.
Mutualistic partners derive a benefit from their interaction, but this benefit can come at a cost. This is the case for plant-ant and plant-pollinator mutualistic associations. In exchange for protection from herbivores provided by the resident ants, plants supply various kinds of resources or nests to the ants. Most ant-myrmecophyte mutualisms are horizontally transmitted, and therefore, partners share an interest in growth but not in reproduction. This lack of alignment in fitness interests between plants and ants drives a conflict between them: ants can attack pollinators that cross-fertilize the host plants. Using a mathematical model, we define a threshold in ant aggressiveness determining pollinator survival or elimination on the host plant. In our model we observed that, all else being equal, facultative interactions result in pollinator extinction for lower levels of ant aggressiveness than obligatory interactions. We propose that the capacity to discriminate pollinators from herbivores should not often evolve in ants, and when it does it will be when the plants exhibit limited dispersal in an environment that is not seed saturated so that each seed produced can effectively generate a new offspring or if ants acquire an extra benefit from pollination (e.g. if ants eat fruit). We suggest specific mutualism examples where these hypotheses can be tested empirically.  相似文献   

10.
The nectivorous ant Camponotus mus shows a broad size variation within the worker caste. Large ants can ingest faster and larger loads than small ones. Differences in physiological abilities in fluid ingestion due to the insect size could be related to differences in decision-making according to ant size during nectar foraging. Sucrose solutions of different levels of sugar concentration (30% or 60%w/w), viscosity (high or low) or flow rate (ad libitum or 1microl/min) were offered in combination to analyse the behavioural responses to each of these properties separately. Differences were found depending on ant body size and the property compared. A regulated flow produced smaller crop loads for medium and large ants compared to the same solution given ad libitum. All foragers remained longer times feeding at the regulated flow source but larger ants often made longer interruptions. When sugar concentration was constant but viscosity was high, only large ants increased feeding time. Constant viscosity with different sugar concentration determined longer feeding time and bigger loads for the most concentrated solution for small but not for large ants. Small ants reached similar crop loads in a variety of conditions while large ants did not. These differences could be evidence of a possible specialization for nectar foraging based on ant body size.  相似文献   

11.
Mutualisms between plants and ants are common features of tropical ecosystems around the globe and can have cascading effects on interactions with the ecological communities in which they occur. In an African savanna, we assessed whether acacia ants influence nest site selection by tree-nesting birds. Birds selected nest sites in trees inhabited by ant species that vigorously defend against browsing mammals. Future research could address the extent to which hatching and fledging rates depend on the species of ant symbiont, and why ants tolerate nesting birds but no other tree associates (especially insects). Abstract in Swahili is available with online material.  相似文献   

12.
Collective decisions in animal groups emerge from the actions of individuals who are unlikely to have global information. Comparative assessment of options can be valuable in decision-making. Ant colonies are excellent collective decision-makers, for example when selecting a new nest-site. Here, we test the dependency of this cooperative process on comparisons conducted by individual ants. We presented ant colonies with a choice between new nests: one good and one poor. Using individually radio-tagged ants and an automated system of doors, we manipulated individual-level access to information: ants visiting the good nest were barred from visiting the poor one and vice versa. Thus, no ant could individually compare the available options. Despite this, colonies still emigrated quickly and accurately when comparisons were prevented. Individual-level rules facilitated this behavioural robustness: ants allowed to experience only the poor nest subsequently searched more. Intriguingly, some ants appeared particularly discriminating across emigrations under both treatments, suggesting they had stable, high nest acceptance thresholds. Overall, our results show how a colony of ants, as a cognitive entity, can compare two options that are not both accessible by any individual ant. Our findings illustrate a collective decision process that is robust to differences in individual access to information.  相似文献   

13.
Non‐pollinating consumers of floral resources, especially ants, can disrupt pollination and plant reproductive processes. As an alternative food resource to flowers, extrafloral nectar (EFN) may distract and satiate ants from flowers, thereby reducing their antagonistic effects on plants. Yet, EFN may actually attract and increase ant density on plants, thus increasing the disruption of pollination and/or their defense of plants. In this study, we tested the effects of ants and EFN on pollinating seed‐consuming interactions between senita cacti and senita moths in the Sonoran Desert. Prior study of senita showed that EFN can distract ants from flowers, but consequences for plant–pollinator interactions remain unstudied. In our current study, ant exclusion had no effect on pollination or oviposition when moths were abundant (>85% flower visitation). Yet, in an ant by EFN factorial experiment under lower moth abundance (<40% visitation), there was a significant effect of ant exclusion (but not EFN or an ant × EFN) on pollination and oviposition. In contrast with our predictions, ant presence increased rather than decreased pollination (and oviposition) by moths, indicating a beneficial effect of ants on plant reproduction. While ant density on plants showed a saturating response to continuous experimental variation in EFN, in support of ant satiation and distraction, the probability of pollination and oviposition increased and saturated with ant density, again showing a beneficial effect of ants on plant reproduction. Ants showed no significant effect on fruit set, fruit survival, or fruit production of oviposited flowers in the ant exclusion experiment. Ants did not affect the survival of moth larvae, but there was a marginally significant effect of ants in reducing wasp parasitism of moths. We suggest that EFN may not only distract ants from disrupting plant–pollinator interactions, but they may also enhance plant–pollinator interactions by increasing pollination and reducing wasp parasitism. Though often considered dichotomous hypotheses, ant distraction and plant defense may be synergistic, though the mechanism(s) for such positive ant effects on plant–pollinator interactions needs further study.  相似文献   

14.
In the present study, we investigated whether single-file traffic of the ant Camponotus japonicus would exhibit a transition to traffic-jamming with increasing density under stress conditions. Previous work indicated that this transition did not occur in non-stressed ants, in contrast to data from pedestrians and vehicular traffic. Citronella oil was used to elicit ant movement from one end of a unidirectional passage to the other. The movements were recorded with a video camera, and the speed and distance travelled were extracted using image processing. We provided fundamental diagrams of ant traffic for small and large ants under stress conditions. Examination of the relationship between flow rate and density revealed no evidence of jamming, different from pedestrian and vehicular traffic. Concerning the speed-density relationship, surprisingly, in contrast with human fundamental diagrams (vehicular and pedestrian), we found that speed seemed to be constant with density within the experimental error. This study provided novel experimental data on ant traffic and might inform future studies of collective behavior of social insects and traffic systems.  相似文献   

15.
The abundance of many invasive species can vary substantially over time, with dramatic population declines and local extinctions frequently observed in a wide range of taxa. We highlight population crashes of invasive ants, which are some of the most widespread and damaging invasive animals. Population collapse or substantial declines have been observed in nearly all of the major invasive ant species including the yellow crazy ant (Anoplolepis gracilipes), Argentine ants (Linepithema humile), big-headed or coastal brown ant (Pheidole megacephala), the tropical fire ant (Solenopsis geminata), red imported fire ants (Solenopsis invicta), and the little fire ant or electric ant (Wasmannia auropunctata). These declines frequently attract little attention, especially compared with their initial invasion phase. Suggested mechanisms for population collapse include pathogens or parasites, changes in the food availability, or even long-term effects of the reproductive biology of invasive ants. A critical component of the collapses may be a reduction in the densities of the invasive ant species, which are often competitively weak in low abundance. We propose that mechanisms causing a reduction in invasive ant abundance may initiate a local extinction vortex. Declines in abundance likely reduce the invasive ant’s competitive ability, resource acquisition and defense capability. These reductions could further reduce the abundance of an invasive ant species, and so on. Management of invasive ants through the use of pesticides is expensive, potentially ecologically harmful, and can be ineffective. We argue that pesticide use may even have the potential to forestall natural population declines and collapses. We propose that in order to better manage these invasive ants, we need to understand and capitalize on features of their population dynamics that promote population collapse.  相似文献   

16.
Animal interactions play an important role in understanding ecological processes. The nature and intensity of these interactions can shape the impacts of organisms on their environment. Because ants and termites, with their high biomass and range of ecological functions, have considerable effects on their environment, the interaction between them is important for ecosystem processes. Although the manner in which ants and termites interact is becoming increasingly well studied, there has been no synthesis to date of the available literature. Here we review and synthesise all existing literature on ant–termite interactions. We infer that ant predation on termites is the most important, most widespread, and most studied type of interaction. Predatory ant species can regulate termite populations and subsequently slow down the decomposition of wood, litter and soil organic matter. As a consequence they also affect plant growth and distribution, nutrient cycling and nutrient availability. Although some ant species are specialised termite predators, there is probably a high level of opportunistic predation by generalist ant species, and hence their impact on ecosystem processes that termites are known to provide varies at the species level. The most fruitful future research direction will be to evaluate the impact of ant–termite predation on broader ecosystem processes. To do this it will be necessary to quantify the efficacy both of particular ant species and of ant communities as a whole in regulating termite populations in different biomes. We envisage that this work will require a combination of methods, including DNA barcoding of ant gut contents along with field observations and exclusion experiments. Such a combined approach is necessary for assessing how this interaction influences entire ecosystems.  相似文献   

17.
Haemig 《Ecology letters》1999,2(3):178-184
Although interactions between species are often assumed to be fixed, theory and empirical evidence suggest that they may be quite variable, changing in the presence of other species or environmental conditions. The interaction between ants and nesting birds exhibits such variability, ants sometimes being predators of bird nests and other times protectors of them. Hypothesizing that predation risk might be a critical factor in altering the interaction of ants with birds, I investigated the interaction of wood ants Formica aquilonia with nesting birds under different levels of predation risk. In a controlled field experiment, I allowed tits ( Parus major, P. caeruleus, P. ater ) and pied flycatchers ( Ficedula hypoleuca ) to select nest boxes in trees with ants (ant trees) or trees without ants. I found that birds usually nested in trees without ants, apparently to avoid the danger of injury from encounters with ants. Nesting in ant trees occurred mainly in the habitat where risk of predation was highest (along the forest edge), and with the bird taxa that lost nests most frequently in trees without ants (tits). Tits nesting on the forest edge achieved significantly greater nesting success, and fledged significantly more young, in ant trees compared with trees without ants. As the season progressed, ant traffic increased in trees without nesting birds, but decreased in trees with nesting birds, indicating that the outcome of interference competition between ants and nesting birds was reversed under increased predation risk. These results support the idea that predation risk can shift species interactions from predominately competitive processes to predominately facilitative processes.  相似文献   

18.
Abiotic conditions can increase the costs of services and/or the benefits of rewards provided by mutualistic partners. Consequently, in some situations, the outcome of mutualisms can move from beneficial to detrimental for at least one partner. In the case of protective mutualisms between ant bodyguards and plants bearing extrafloral nectaries (EFNs), plants from arid environments face a trade‐off between EFN production and maintenance and water and carbon economy. This trade‐off may increase EFN costs and decrease their value as a defensive strategy to plants in such environments. Despite this, the presence of EFNs is an ubiquitous trait in plants from arid environments, suggesting that they provide greater benefits to plants in these environments to compensate for their higher costs. We used a meta‐analysis to investigate if such benefits do increase with decreasing water availability and the possible underlying causes (such as ant behaviour or ant diversity). As predicted, ant effect on EFN plants performance increased as mean annual precipitation decreased. We also found that the frequency of dominant ants on EFN plants increased in drier areas. Due to the more aggressive behaviour of dominant ants, we suggest that they represent an important factor shaping the adaptive value of EFNs to plants in arid environments.  相似文献   

19.
Ants dominate many terrestrial ecosystems, yet we know little about their nutritional physiology and ecology. While traditionally viewed as predators and scavengers, recent isotopic studies revealed that many dominant ant species are functional herbivores. As with other insects with nitrogen-poor diets, it is hypothesized that these ants rely on symbiotic bacteria for nutritional supplementation. In this study, we used cloning and 16S sequencing to further characterize the bacterial flora of several herbivorous ants, while also examining the beta diversity of bacterial communities within and between ant species from different trophic levels. Through estimating phylogenetic overlap between these communities, we tested the hypothesis that ecologically or phylogenetically similar groups of ants harbor similar microbial flora. Our findings reveal: (i) clear differences in bacterial communities harbored by predatory and herbivorous ants; (ii) notable similarities among communities from distantly related herbivorous ants and (iii) similar communities shared by different predatory army ant species. Focusing on one herbivorous ant tribe, the Cephalotini, we detected five major bacterial taxa that likely represent the core microbiota. Metabolic functions of bacterial relatives suggest that these microbes may play roles in fixing, recycling, or upgrading nitrogen. Overall, our findings reveal that similar microbial communities are harbored by ants from similar trophic niches and, to a greater extent, by related ants from the same colonies, species, genera, and tribes. These trends hint at coevolved histories between ants and microbes, suggesting new possibilities for roles of bacteria in the evolution of both herbivores and carnivores from the ant family Formicidae.  相似文献   

20.
红火蚁入侵对棉花粉蚧近距离扩散的促进作用   总被引:1,自引:0,他引:1       下载免费PDF全文
[背景]红火蚁与棉花粉蚧入侵到同一地区,因侵入生境重叠而相遇,进而产生互惠关系。这种互惠关系对红火蚁、棉花粉蚧的生存、扩散传播、入侵的意义和作用规律、机制等是需要解释的生态学问题。[方法]采用田问试验生态学的方法,通过迁移红火蚁蚁巢、向扶桑上接粉蚧等观察研究了红火蚁入侵对棉花粉蚧近距离扩散的影响。[结果]随着离蚁巢距离的增大,扶桑上工蚁数量逐渐减少,距离为1.0、2.0m时数量较多;发生该蚁区域距蚁巢2.0、3.0m扶桑感染粉蚧比率(75%、45%)显著高于无红火蚁区(25%、10%),其感染比率与工蚁数量呈显著正相关,符合方程Y=0.0042X+0.1992。[结论与意义]红火蚁入侵促进了棉花粉蚧的近距离扩散,扩散范围在2—3m。研究结果可为深入了解红火蚁与棉花粉蚧协同入侵规律等提供支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号