首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The insulinoma-associated protein 2 (IA-2) is a phosphatase-like autoantigen inducing T and B cell responses associated with human insulin-dependent diabetes mellitus (IDDM). We now report that T cell responses to IA-2 can also be detected in the nonobese diabetic (NOD) mouse, a model of human IDDM. Cytokine secretion in response to purified mouse rIA-2, characterized by high IFN-gamma and relatively low IL-10 and IL-6 secretion, was elicited in spleen cells from unprimed NOD mice. Conversely, no response to IA-2 was induced in spleen cells from BALB/c, C57BL/6, or Biozzi AB/H mice that express, like NOD, the I-A(g7) class II molecule, but are not susceptible to spontaneous IDDM. The IA-2-induced IFN-gamma response in NOD spleen cells could already be detected at 3 wk and peaked at 8 wk of age, whereas the IL-10 secretion was maximal at 4 wk of age and then waned. IA-2-dependent IFN-gamma secretion was induced in CD4(+) cells from spleen as well as pancreatic and mesenteric lymph nodes. It required Ag presentation by I-A(g7) molecules and engagement of the CD4 coreceptor. Interestingly, cytokines were produced in the absence of cell proliferation and IL-2 secretion. The biological relevance of the response to IA-2 is indicated by the enhanced IDDM following a single injection of the recombinant protein emulsified in IFA into 18-day-old NOD mice. In addition, IFN-gamma production in response to IA-2 and IDDM acceleration could be induced by IL-12 administration to 12-day-old NOD mice. These results identify IA-2 as an early T cell-inducing autoantigen in the NOD mouse and indicate a role for the IA-2-induced Th1 cell response in IDDM pathogenesis.  相似文献   

2.
Genetic analysis for insulitis in NOD mice   总被引:3,自引:0,他引:3  
Non-obese diabetic (NOD) mice spontaneously develop diabetic signs akin to those of Type I diabetes in man. Insulitis, i.e., lymphocytic infiltration around and into the pancreatic islets is one of the characteristics of such mice. It is also the etiologic pathological lesion in the development of diabetes mellitus in NOD mice. Thus, we chose insulitis as a marker for genetic analysis of the development of diabetes mellitus in NOD mice and clarified the mode of its inheritance. In breeding studies between NOD and C57BL/6J mice, insulitis was not observed in the F1 and (F1 X C57BL/6J) backcross generations, but was found with incidences of 3.9% in females and 1.4% in males in the F2 generation and 23.7% in females and 12.1% in males in the (F1 X NOD) backcross generation. These incidences in the F2 and (F1 X NOD) backcross females corresponded approximately to 1/16 and 1/4 of the incidences of 89.7% in the NOD females, respectively. A similar relationship was observed between the F2 and (F1 X NOD) backcross males and the NOD males. When the gene expressivity of both sexes for a double recessive homozygote was assumed to be the incidences of insulitis in 9-week-old NOD females and males, respectively, the expected numbers of both sexes with and without insulitis in the F2 and backcross generations agreed well with the observed ones. These observations suggest that two recessive genes on independent autosomal chromosomes are necessary for the development of insulitis in NOD mice.  相似文献   

3.
The nonobese diabetic (NOD) mouse spontaneously develops autoimmune insulin-dependent diabetes mellitus and serves as a model for human type I diabetes. NOD spleen cells proliferate to a lesser extent than those from C57BL/6 and BALB/c mice in response to anti-CD3. To investigate the cause of this reduced T cell proliferation, costimulatory molecule expression was investigated. It was found that NOD macrophages, dendritic cells, and T cells, but not B cells, expressed lower basal levels of CD86, but not CD80, CD28, or CD40, compared with C57BL/6 and BALB/c. This low CD86 expression was not dependent on the MHC haplotype or on diabetes development since the NOD-related, diabetes-free mouse strains NON (H-2nb1) and NOR (H-2g7) exhibited similar low levels of CD86 expression and proliferation. Furthermore, following activation, the relative up-regulation of CTLA-4, as compared with CD28, was more pronounced on C57BL/6 and BALB/c T cells as shown by an increased CTLA-4/CD28 ratio. This activation-induced increase in the CTLA-4/CD28 ratio was markedly reduced on NOD T cells compared with the other two strains. The low CD86 expression in NOD mice may account for the reduced increase in both proliferation and the CTLA-4/CD28 ratio, since reducing CD86 expression in C57BL/6 and BALB/c cultures to NOD levels significantly reduces the proliferation and the CTLA-4/CD28 ratio. Therefore, we propose that a low level of CD86 expression in the NOD mouse contributes to a defective regulation of autoreactive T cells by preventing the full activation of T cells and therefore the up-regulation of CTLA-4.  相似文献   

4.
5.
6.
Early induction of diabetes in NOD mice by streptozotocin   总被引:2,自引:0,他引:2  
To clarify whether the non-obese diabetes prone (NOD) mouse has an unusual pancreatic sensitivity to damage, mice were administered streptozotocin in high dose (direct beta cell toxic) or multiple low-dose (autoimmune-insulitis generating) regimen. NOD mice were found to be less sensitive to the diabetogenic effects of high-dose streptozotocin than C57BL/6 mice, but were exquisitely responsive to the multiple low dose regimen when compared to C57BL/6 or C3H/HeJ mice. These results suggest that the basic defect in NOD mice resides in the immune system and that the NOD mouse may be a useful model to investigate the relationships between environmental factors and intrinsic genetic predisposition to diabetes.  相似文献   

7.
The effect of single severe stress in the form of forced swimming on the behavior of males and females in the mouse inbred strains CBA/Lac and C57BL/6J were examined in the open field test. Measurements were carried out within two hours after the stress exposure (Trial 1) and repeated 2 hours thereafter (Trial 2). Intact males and females of the both mouse strains which tested in the open field twice too were used as control. An increased latency was found until first escape from the center both in males and females of the CBA/Lac strain within two hours after the end of forced swimming. This parameter was still high in females in the Trial2. Four out of seven behavior parameters were changed in females of the C57BL/6J strain two hours after the stress exposure, but their behavior was similar to control in the Trial 2. The males of the C57BL/6J strain demonstrated the least changed behavior in the open field test after the stress exposure with the exception of increased number of grooming in the Trial 1. Further on, a detailed analysis of repeated testing in the open field within intact and stressed mice of both strains was performed. This comparison allowed revealing hereditary and gender peculiarities in the mouse behavior after single severe stress exposure. The results are discussed in respect to the possible genetically inherent increased traitanxiety in females of C57BL/6J strain and the state of anxiety in females of CBA/Lac strain.  相似文献   

8.
We report here that mouse embryos can exhibit a significant incidence of blastomere fragmentation at the two-cell stage. The incidence of this is influenced by both the maternal and paternal genotype. Embryos from C57BL/6 mothers exhibit a very low incidence of fragmentation at the two-cell stage in crosses involving males of C57BL/6, DBA/2, AKR/J, or SJL strains but exhibit a significantly increased incidence of fragmentation in crosses involving C3H/HeJ males. Increased fragmentation is seen in embryos from C3H/HeJ females crossed with C57BL/6 males but not with C3H/HeJ males. Embryos obtained from reciprocal (C57BL/6 x C3H/HeJ) F1 hybrid females also exhibit an increased incidence of fragmentation at the two-cell stage when the hybrid females are mated to either C57BL/6 or C3H/HeJ males. Interestingly, the results differ significantly between reciprocal F1 hybrid females, indicating a parental origin effect, possibly a result of either genomic imprinting or differences in mitochondrial origin. We conclude that the incidence of blastomere fragmentation at the two-cell stage in the mouse is under the control of more than one genetic locus. We also conclude that blastomere fragmentation is affected by both parental genotypes. These results are relevant to understanding the genetic control blastomere fragmentation, which may contribute to evolutionary processes, affect the success of procedures such as cloning, and affect the outcome of assisted reproduction techniques.  相似文献   

9.
Heat shock protein 60 (hsp60) is a target antigen in autoimmune diabetes and injections of human hsp60 for tolerance induction were found to protect non-obese diabetic (NOD) mice, an animal model of human type 1 diabetes, from disease development. We tested whether innate immune cells of NOD mice exhibit an abnormal response to extracellular hsp60. Bone marrow derived macrophages (BMM) were grown from NOD, C57BL/6J, non-obese non-diabetic (NON) mice, and NOD-related congenic variants differing in the Idd-3, Idd-10/18, or major histocompatibility complex (MHC) region. Hsp60-stimulated BMM of NOD mice were found to produce high levels of interleukin (IL)-12(p70). The addition of IL-10 downregulated, whereas cyclooxygenase inhibitors elevated, IL-12(p70) production of activated BMM. BMM of NON, NON-NOD-H-2(g7) as well as of NOD-NON-H-2(nbl) mice produced significantly less IL-12(p70) than BMM of NOD mice, indicating that an interaction between the MHC haplotype and non-MHC genes of the NOD mouse is required for hyperresponsiveness to hsp60.  相似文献   

10.
Rotaviruses are implicated as a viral trigger for the acceleration of type 1 diabetes in children. Infection of adult non-obese diabetic (NOD) mice with rotavirus strain RRV accelerates diabetes development, whereas RRV infection in infant NOD mice delays diabetes onset. In this study of infant mice, RRV titers and lymphocyte populations in the intestine, mesenteric lymph nodes (MLN) and thymus of NOD mice were compared with those in diabetes-resistant BALB/c and C57BL/6 mice. Enhanced intestinal RRV infection occurred in NOD mice compared with the other mouse strains. This was associated with increases in the frequency of CD8αβ TCRαβ intraepithelial lymphocytes, and their PD-L1 expression. Virus spread to the MLN and T cell numbers there also were greatest in NOD mice. Thymic RRV infection is shown here in all mouse strains, often in combination with alterations in T cell ontogeny. Infection lowered thymocyte numbers in infant NOD and C57BL/6 mice, whereas thymocyte production was unaltered overall in infant BALB/c mice. In the NOD mouse thymus, effector CD4+ T cell numbers were reduced by infection, whereas regulatory T cell numbers were maintained. It is proposed that maintenance of thymic regulatory T cell numbers may contribute to the increased suppression of inflammatory T cells in response to a strong stimulus observed in pancreatic lymph nodes of adult mice infected as infants. These findings show that rotavirus replication is enhanced in diabetes-prone mice, and provide evidence that thymic T cell alterations may contribute to the delayed diabetes onset following RRV infection.  相似文献   

11.
During late pregnancy, female mice of the DBA/2J inbred strain are more likely to exhibit aggressive behavior toward a standard stimulus intruder male than C57BL/6J females. This strain difference can not be accounted for by differences in circulating levels of progesterone (P) since pregnant DBA/2J and C57BL/6J females exhibit similar patterns of the steroid throughout pregnancy. Upon receiving subcutaneously implanted Silastic capsules containing P, virgin DBA/2J mice are more likely than virgin C57BL/6J to respond to the steroid by exhibiting aggression. Strain differences in the aggressive behavior exhibited by pregnant mice may be related to genotype-based variation in central neural tissue sensitivity to P.  相似文献   

12.
Tumour necrosis factor (TNF)-alpha is known to be involved in anxiety and the regulation of the hypothalamic-pituitary-adrenal axis. To examine the role of its receptors in neuroendocrine immunomodulation, we studied behaviour, corticosterone production and T-cell activation in mice with a C57BL/6J background and deficient for one or both TNF receptors (TNFR1-/-, TNFR2-/-, and TNFR1+2-/-) compared to wildtype C57BL/6J mice with and without psychological stress. Stress was induced by social disruption (SDR), and anxiety-like behaviour was examined using the elevated plus maze (EPM). Anxiety of unstressed TNFR1+2-/- mice was increased compared to C57BL/6J mice as shown by reduced ratios of entries into open arms relatively to total entries. SDR-stressed TNFR1+2-/- mice showed reduced ratios of entries into open arms relatively to total entries, reduced ratios of distances walked in open relatively to distances walked in both arms and reduced time in open arms compared to C57BL/6J mice. Locomotor activity of unstressed and SDR-stressed TNFR1-/- and TNFR2-/- mice was reduced. Serum corticosterone concentrations of control mice do not differ between mouse strains. However, TNFR1+2-/- mice had significantly higher corticosterone concentrations than C57BL/6J mice after SDR. EPM testing significantly increased corticosterone concentrations in all strains. Mitogen-induced activation-marker expression was reduced in TNFR1-/- T-helper cells under control and stress conditions, while activation marker expression of TNFR2-/- and TNFR1+2-/- cells was only slightly affected by stress compared to C57BL/6J T cells. Our study suggests that both TNF receptors contribute to anxiety-like behaviour and corticosterone responses, whereas TNFR1 has a larger impact on T-cell activation.  相似文献   

13.
The manipulation of a specific gene in NOD mice, the best animal model for insulin-dependent diabetes mellitus (IDDM), must allow for the precise characterization of the functional involvement of its encoded molecule in the pathogenesis of the disease. Although this has been attempted by the cross-breeding of NOD mice with many gene knockout mice originally created on the 129 or C57BL/6 strain background, the interpretation of the resulting phenotype(s) has often been confusing due to the possibility of a known or unknown disease susceptibility locus (e.g., Idd locus) cosegregating with the targeted gene from the diabetes-resistant strain. Therefore, it is important to generate mutant mice on a pure NOD background by using NOD-derived embryonic stem (ES) cells. By using the NOD ES cell line established by Nagafuchi and colleagues in 1999 (FEBSLett., 455, 101–104), the authors reexamined various conditions in the context of cell culture, DNA transfection, and blastocyst injection, and achieved a markedly improved transmission efficiency of these NOD ES cells into the mouse germ line. These modifications will enable gene targeting on a “pure” NOD background with high efficiency, and contribute to clarifying the physiological roles of a variety of genes in the disease course of IDDM.  相似文献   

14.
15.
This study reports data on craniometric measurements in the X-linked hypophosphatemic (Hyp) mouse on two different genetic backgrounds: C57BL/6J and B6C3H. Heads of normal females "+/+," normal males "+/Y," heterozygous mutant females "Hyp/+," and hemizygous mutant males "Hyp/Y" for each genetic background were examined. Data were collected via skull measurements. On a C57BL/6J background, the neurocranium of mutants "Hyp/+" and "Hyp/Y" was shorter and slightly higher than in normal counterparts. On a B6C3H background, mutant mice "Hyp/+" and "Hyp/Y" were shorter in neurocranial length than in normal counterparts. Viscerocranial height was larger in "Hyp/Y" than in normal counterparts. No differences in neurocranial and mandibular height were found. Mutant mice on a C57BL/6J background were compared to mutant mice on a B6C3H background. No differences in neurocranial length were found. Cranial length was shorter in "Hyp/Y" on C57BL/6J than in "Hyp/+" on B6C3H. Facial length parameters were shorter in "Hyp/Y" on C57BL/6J than in "Hyp/Y" and "Hyp/+" mutant mice on B6C3H. Mandibular length was shorter in "Hyp/Y" on C57BL/6J than in "Hyp/+" on C57BL/6J and both mutant mice ("Hyp/Y" and "Hyp/+") on a B6C3H background. The results of this study indicate that craniofacial growth is less affected in mutant mice on a B6C3H genetic background than in mutant mice on a C57BL/6J genetic background.  相似文献   

16.
The impact of exposure to lead on gut cytokine gene expression and oral tolerance was analyzed. Oral tolerization with ovalbumin (OVA) increased levels of IL-10 and TGF-beta in gut tissue while IFN-gamma mRNA levels remained unchanged in both autoimmune diabetes prone NOD and normal C57BL/6 mice. This shift towards Th2/Th3 type cytokine gene expression was completely abolished by concomitant treatment with PbCl2 (6 x 0.5 mg/kg) in NOD mice while the cytokine balance in C57BL/6 mice was unaffected. Suppression of Th2/Th3 type cytokine expression was associated with a dampened oral tolerance response to OVA as determined by T cell proliferation assays. We conclude that in autoimmunity prone NOD mice environmental toxicants may disturb immune homeostasis by targeting the gut immune system.  相似文献   

17.
We devised a real-time RT-PCR method for the quantification of preproinsulin 1 and 2, proglucagon, prosomatostatin, and GAD 65 and 67 mRNAs in the thymus, using specific primers and internal probes. Corresponding standard cRNA synthesis and normalization to 18S ribosomal RNA allowed direct quantification. Then, during the first month of life, the expression of each substance of interest was measured in the thymus of NOD mice (a spontaneous model of type 1 diabetes), C57BL/6, BALB/c and lymphocyte-deficient mice (NODscid, NODrag, BALB/cscid and C57BL/6rag). In all mouse thymuses, preproinsulin 1 and GAD 65 were undetectable, preproinsulin 2 and proglucagon showed low expression, whereas that of GAD 67 and somatostatin were high. In 7-day-old mice, GAD 67 and prosomatostatin thymic expressions were lower in NOD than in C57BL/6, and at the same age, the scid mutation but not the rag mutation induced higher expression of all investigated genes compared to control mice. In conclusion, our data allowed the quantification of the expression of pancreatic factors in the mouse thymus. Investigations are underway to quantify, at the cellular level, i.e., in thymic dendritic/macrophage cells, the RNA expression of potential autoantigens, such as preproinsulin 2 and GAD 67.  相似文献   

18.
Nuclear protein antigens to the antinuclear antibodies in serum of non-obese diabetic (NOD) mice were investigated. In the serum of diabetic NOD female mice (20 weeks old), the antinuclear antibodies were detected by indirect immunofluorescence assay using frozen sections of liver of C 57 BL/6 J or NOD mice as antigen. Nuclei were separated from the liver of C 57 BL/6 J mice and solubilized. Solubilized nuclear antigens were analyzed by SDS PAGE-Western immunoblotting techniques. Nuclear protein antigens with molecular weights of 26,000, 32,000 and 65,000 showed strongly positive reactions with the antinuclear antibodies in the serum of the NOD mouse.  相似文献   

19.
Linkage analysis and congenic mapping in NOD mice have identified a susceptibility locus for type 1 diabetes, Idd5.1 on mouse chromosome 1, which includes the Ctla4 and Icos genes. Besides type 1 diabetes, numerous autoimmune diseases have been mapped to a syntenic region on human chromosome 2q33. In this study we determined how the costimulatory molecules encoded by these genes contribute to the immunopathogenesis of experimental autoimmune encephalomyelitis (EAE). When we compared levels of expression of costimulatory molecules on T cells, we found higher ICOS and lower full-length CTLA-4 expression on activated NOD T cells compared with C57BL/6 (B6) and C57BL/10 (B10) T cells. Using NOD.B10 Idd5 congenic strains, we determined that a 2.1-Mb region controls the observed expression differences of ICOS. Although Idd5.1 congenic mice are resistant to diabetes, we found them more susceptible to myelin oligodendrocyte glycoprotein 35-55-induced EAE compared with NOD mice. Our data demonstrate that higher ICOS expression correlates with more IL-10 production by NOD-derived T cells, and this may be responsible for the less severe EAE in NOD mice compared with Idd5.1 congenic mice. Paradoxically, alleles at the Idd5.1 locus have opposite effects on two autoimmune diseases, diabetes and EAE. This may reflect differential roles for costimulatory pathways in inducing autoimmune responses depending upon the origin (tissue) of the target Ag.  相似文献   

20.
Paraoxonase 1 (PON1) is a lipo-lactonase which is associated with HDL and possesses antioxidative properties. Diabetes is characterized by increased oxidative stress and by decreased PON1 activity. We aimed to analyze whether oxidative status and PON1 levels in mouse sera and macrophages could affect streptozotocin (STZ)-induced diabetes development. We have used two models of mice under low oxidative stress: STZ-injected apolipoprotein E-deficient mice supplemented with the antioxidant vitamin E, and P47(phox) knockout mice. In both mice models the decreased serum basal oxidative stress, was associated with a decreased rate of diabetes development, compared with control STZ-injected apolipoprotein E-deficient mice or with C57BL mice respectively. These data suggest that oxidative stress accelerates diabetes development. Next, we analyzed the effect of PON1 on macrophage oxidative stress and on diabetes development in STZ-injected C57BL mice, PON1 knockout mice, and PON1 transgenic mice. PON1 overexpression was associated with decreased diabetes-induced macrophage oxidative stress, decreased diabetes development, and decreased mortality, in comparison to C57BL mice, and even more so when compared to PON1KO mice. We thus concluded that on increasing PON1 expression in mice, diabetes development is attenuated, a phenomenon which could be attributed to the antioxidative properties of PON1, as decrement of oxidative stress significantly attenuated STZ-induced diabetes development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号