首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although Cd(2+) is a more effective inducer of phytochelatin (PC) synthesis than Zn(2+) in higher plants, we have observed greater induction of PC synthesis by Zn(2+) than Cd(2+) in the marine green alga, Dunaliella tertiolecta. To elucidate this unique regulation of PC synthesis by Zn(2+), we investigated the effects of Zn(2+) and Cd(2+) on the activities of both phytochelatin synthase (PC synthase) and enzymes in the GSH biosynthetic pathway. PC synthase was more strongly activated by Cd(2+) than by Zn(2+), but the difference was not very big. On the other hand, gamma-glutamylcysteine synthetase (gamma-ECS) and glutathione synthetase (GS) were activated by both heavy metals, but their activities were higher in Zn-treated cells than in Cd-treated cells. Dose-dependent stimulation of intracellular reactive oxygen species (ROS) production was observed with Zn(2+), but not Cd(2+) treatment. These results suggest that Zn(2+) strongly promotes the synthesis of GSH through indirect activation of gamma-ECS and GS by stimulating ROS generation. This acceleration of the flux rate for GSH synthesis might mainly contribute to high level PC synthesis.  相似文献   

2.
To investigate rate-limiting factors for glutathione and phytochelatin (PC) production and the importance of these compounds for heavy metal tolerance, Indian mustard (Brassica juncea) was genetically engineered to overexpress the Escherichia coli gshI gene encoding gamma-glutamylcysteine synthetase (gamma-ECS), targeted to the plastids. The gamma-ECS transgenic seedlings showed increased tolerance to Cd and had higher concentrations of PCs, gamma-GluCys, glutathione, and total non-protein thiols compared with wild-type (WT) seedlings. When tested in a hydroponic system, gamma-ECS mature plants accumulated more Cd than WT plants: shoot Cd concentrations were 40% to 90% higher. In spite of their higher tissue Cd concentration, the gamma-ECS plants grew better in the presence of Cd than WT. We conclude that overexpression of gamma-ECS increases biosynthesis of glutathione and PCs, which in turn enhances Cd tolerance and accumulation. Thus, overexpression of gamma-ECS appears to be a promising strategy for the production of plants with superior heavy metal phytoremediation capacity.  相似文献   

3.
Glutathione (gamma-glu-cys-gly; GSH) is usually present at high concentrations in most living cells, being the major reservoir of non-protein reduced sulfur. Because of its unique redox and nucleophilic properties, GSH serves in bio-reductive reactions as an important line of defense against reactive oxygen species, xenobiotics and heavy metals. GSH is synthesized from its constituent amino acids by two ATP-dependent reactions catalyzed by gamma-glutamylcysteine synthetase and glutathione synthetase. In yeast, these enzymes are found in the cytosol, whereas in plants they are located in the cytosol and chloroplast. In protists, their location is not well established. In turn, the sulfur assimilation pathway, which leads to cysteine biosynthesis, involves high and low affinity sulfate transporters, and the enzymes ATP sulfurylase, APS kinase, PAPS reductase or APS reductase, sulfite reductase, serine acetyl transferase, O-acetylserine/O-acetylhomoserine sulfhydrylase and, in some organisms, also cystathionine beta-synthase and cystathionine gamma-lyase. The biochemical and genetic regulation of these pathways is affected by oxidative stress, sulfur deficiency and heavy metal exposure. Cells cope with heavy metal stress using different mechanisms, such as complexation and compartmentation. One of these mechanisms in some yeast, plants and protists is the enhanced synthesis of the heavy metal-chelating molecules GSH and phytochelatins, which are formed from GSH by phytochelatin synthase (PCS) in a heavy metal-dependent reaction; Cd(2+) is the most potent activator of PCS. In this work, we review the biochemical and genetic mechanisms involved in the regulation of sulfate assimilation-reduction and GSH metabolism when yeast, plants and protists are challenged by Cd(2+).  相似文献   

4.
Glutathione-deficient mutants (gshA) of the yeast Saccharomyces cerevisiae, impaired in the first step of glutathione (GSH) biosynthesis were studied with respect to the regulation of enzymes involved in GSH catabolism and cysteine biosynthesis. Striking differences were observed in the content of the sulphur amino acids when gshA mutants were compared to wild-type strains growing on the same minimal medium. Furthermore, all mutants examined showed a derepression of gamma-glutamyltranspeptidase (gamm-GT), the enzyme initiating GSH degradation. However, gamma-cystathionase and cysteine synthase were unaffected by the GSH deficiency as long as the nutrient sulphate source was not exhausted. The results suggest that the mutants are probably not impaired in the sulphate assimilation pathway, but that the gamma-glutamyl cycle could play a leading role in the regulation of the sulphur fluxes. Studies of enzyme regulation showed that the derepression of gamma-GT observed in the gshA strains was most probably due to an alteration of the thiol status. The effectors governing the biosynthesis of cysteine synthase and gamma-cystathionase seemed different from those playing a role in gamma-GT regulation and it was only under conditions of total sulphate deprivation that all these enzymes were derepressed. As a consequence the endogenous pool of GSH was used in the synthesis of cysteine. GSH might, therefore, fulfil the role of a storage compound.  相似文献   

5.
6.
Plants cover their need for sulfur by taking up inorganic sulfate, reducing it to sulfide, and incorporating it into the amino acid cysteine. In herbaceous plants the pathway of assimilatory sulfate reduction is highly regulated by the availability of the nutrients sulfate and nitrate. To investigate the regulation of sulfate assimilation in deciduous trees we used the poplar hybrid Populus tremula × P. alba as a model. The enzymes of the pathway are present in several isoforms, except for sulfite reductase and -glutamylcysteine synthetase; the genomic organization of the pathway is thus similar to herbaceous plants. The mRNA level of APS reductase, the key enzyme of the pathway, was induced by 3 days of sulfur deficiency and reduced by nitrogen deficiency in the roots, whereas in the leaves it was affected only by the withdrawal of nitrogen. When both nutrients were absent, the mRNA levels did not differ from those in control plants. Four weeks of sulfur deficiency did not affect growth of the poplar plants, but the content of glutathione, the most abundant low molecular thiol, was reduced compared to control plants. Sulfur limitation resulted in an increase in mRNA levels of ATP sulfurylase, APS reductase, and sulfite reductase, probably as an adaptation mechanism to increase the efficiency of the sulfate assimilation pathway. Altogether, although distinct differences were found, e.g. no effect of sulfate deficiency on APR in poplar leaves, the regulation of sulfate assimilation by nutrient availability observed in poplar was similar to the regulation described for herbaceous plants.  相似文献   

7.
The effect of externally applied L-cysteine and glutathione (GSH) on ATP sulphurylase and adenosine 5'-phosphosulphate reductase (APR), two key enzymes of assimilatory sulphate reduction, was examined in Arabidopsis thaliana root cultures. Addition of increasing L-cysteine to the nutrient solution increased internal cysteine, gamma-glutamylcysteine and GSH concentrations, and decreased APR mRNA, protein and extractable activity. An effect on APR could already be detected at 0.2 mm L-cysteine, whereas ATP sulphurylase was significantly affected only at 2 mm L-cysteine. APR mRNA, protein and activity were also decreased by GSH at 0.2 mm and higher concentrations. In the presence of L-buthionine-S, R-sulphoximine (BSO), an inhibitor of GSH synthesis, 0.2 mm L-cysteine had no effect on APR activity, indicating that GSH formed from cysteine was the regulating substance. Simultaneous addition of BSO and 0.5 mm GSH to the culture medium decreased APR mRNA, enzyme protein and activity. ATP sulphurylase activity was not affected by this treatment. Tracer experiments using (35)SO(4)(2-) in the presence of 0.5 mm L-cysteine or GSH showed that both thiols decreased sulphate uptake, APR activity and the flux of label into cysteine, GSH and protein, but had no effect on the activity of all other enzymes of assimilatory sulphate reduction and serine acetyltransferase. These results are consistent with the hypothesis that thiols regulate the flux through sulphate assimilation at the uptake and the APR step. Analysis of radioactive labelling indicates that the flux control coefficient of APR is more than 0.5 for the intracellular pathway of sulphate assimilation. This analysis also shows that the uptake of external sulphate is inhibited by GSH to a greater extent than the flux through the pathway, and that the flux control coefficient of APR for the pathway, including the transport step, is proportionately less, with a significant share of the control exerted by the transport step.  相似文献   

8.
In plants, the enzymes for cysteine synthesis serine acetyltransferase (SAT) and O-acetylserine-(thiol)-lyase (OASTL) are present in the cytosol, plastids and mitochondria. However, it is still not clearly resolved to what extent the different compartments are involved in cysteine biosynthesis and how compartmentation influences the regulation of this biosynthetic pathway. To address these questions, we analysed Arabidopsis thaliana T-DNA insertion mutants for cytosolic and plastidic SAT isoforms. In addition, the subcellular distribution of enzyme activities and metabolite concentrations implicated in cysteine and glutathione biosynthesis were revealed by non-aqueous fractionation (NAF). We demonstrate that cytosolic SERAT1.1 and plastidic SERAT2.1 do not contribute to cysteine biosynthesis to a major extent, but may function to overcome transport limitations of O-acetylserine (OAS) from mitochondria. Substantiated by predominantly cytosolic cysteine pools, considerable amounts of sulphide and presence of OAS in the cytosol, our results suggest that the cytosol is the principal site for cysteine biosynthesis. Subcellular metabolite analysis further indicated efficient transport of cysteine, γ -glutamylcysteine and glutathione between the compartments. With respect to regulation of cysteine biosynthesis, estimation of subcellular OAS and sulphide concentrations established that OAS is limiting for cysteine biosynthesis and that SAT is mainly present bound in the cysteine–synthase complex.  相似文献   

9.
Glutathione (GSH) is associated with flowering in Arabidopsis thaliana, but how GSH biosynthesis is regulated to control the transition to flowering remains to be elucidated. Since the key reaction of GSH synthesis is catalyzed by gamma-glutamylcysteine synthetase (gamma-ECS) and all the gamma-ECS cDNAs examined contained extra sequences for plastid targeting, we investigated the relationships among GSH levels, photosynthesis and flowering. The GSH level in Arabidopsis increased with the light intensity. The ch1 mutants defective in a light-harvesting antenna in photosystem II showed reduced GSH levels with accumulation of the GSH precursor cysteine, and introduction of the gamma-ECS gene GSH1 under the control of the cauliflower mosaic virus 35S promoter (35S-GSH1) into the ch1 mutant altered the GSH level in response to the gamma-ECS mRNA level. These indicate that photosynthesis limits the gamma-ECS reaction to regulate GSH biosynthesis. Like the glutathione-biosynthesis-defective cad2-1 mutant, the ch1 mutants flowered late under weak-light conditions, and this late-flowering phenotype was rescued by supplementation of GSH. Introduction of the 35S-GSH1 construct into the ch1 mutant altered flowering in response to the gamma-ECS mRNA and GSH levels. These findings indicate that flowering in A. thaliana is regulated by the gamma-ECS reaction of GSH synthesis that is coupled with photosynthesis.  相似文献   

10.
In certain tissues, glutathione biosynthesis is connected to methionine metabolism via the trans-sulfuration pathway. The latter condenses homocysteine and serine to cystathionine in a reaction catalyzed by cystathionine beta-synthase followed by cleavage of cystathionine to cysteine and alpha-ketoglutarate by gamma-cystathionase. Cysteine is the limiting amino acid in glutathione biosynthesis, and studies in our laboratory have shown that approximately 50% of the cysteine in glutathione is derived from homocysteine in human liver cells. In this study, we have examined the effect of pro- and antioxidants on the flux of homocysteine through the trans-sulfuration pathway in the human hepatoma cell line, HepG2. Our studies reveal that pyrrolidine dithiocarbamate and butylated hydroxyanisole enhance the flux of homocysteine through the trans-sulfuration pathway as has been observed previously with the pro-oxidants, H(2)O(2) and tertiary butyl hydroperoxide. In contrast, antioxidants such as catalase, superoxide dismutase and a water-soluble derivative of vitamin E elicit the opposite effect and result in diminished flux of homocysteine through the trans-sulfuration pathway. These studies provide the first evidence for the reciprocal sensitivity of the trans-sulfuration pathway to pro- and antioxidants, and demonstrate that the upstream half of the glutathione biosynthetic pathway (i.e. leading to cysteine biosynthesis) is redox sensitive as is the regulation of the well-studied enzymes in the downstream half (leading from cysteine to glutathione), namely, gamma-glutamyl-cysteine ligase and glutathione synthetase.  相似文献   

11.
Glutathione (GSH), a major antioxidant in most aerobic organisms, is perceived to be particularly important in plant chloroplasts because it helps to protect the photosynthetic apparatus from oxidative damage. In transgenic tobacco plants overexpressing a chloroplast-targeted gamma-glutamylcysteine synthetase (gamma-ECS), foliar levels of GSH were raised threefold. Paradoxically, increased GSH biosynthetic capacity in the chloroplast resulted in greatly enhanced oxidative stress, which was manifested as light intensity-dependent chlorosis or necrosis. This phenotype was associated with foliar pools of both GSH and gamma-glutamylcysteine (the immediate precursor to GSH) being in a more oxidized state. Further manipulations of both the content and redox state of the foliar thiol pools were achieved using hybrid transgenic plants with enhanced glutathione synthetase or glutathione reductase activity in addition to elevated levels of gamma-ECS. Given the results of these experiments, we suggest that gamma-ECS-transformed plants suffered continuous oxidative damage caused by a failure of the redox-sensing process in the chloroplast.  相似文献   

12.
Glutathione (GSH) plays several roles in cell metabolism such as redox state regulation, oxidative stress control, and protection against xenobiotics and heavy metals. GSH is synthesized in two steps catalysed by gamma-glutamylcysteine synthetase (gamma-ECS) and glutathione synthetase. gamma-ECS is feedback inhibited by GSH, which has led to the proposal that this enzyme acts as the rate-limiting step in the pathway. Thus far, the study of GSH metabolism has been confined to GSH synthesis (GSH supply), without considering the GSH-consuming enzymes (GSH demand). Several works have shown that the demand block of enzymes may have a significant control on a pathway; therefore, we hypothesize that GSH-consuming enzymes may exert some control on GSH synthesis. A kinetic model of GSH and phytochelatin synthesis in plants was constructed using the software GEPASI and the kinetic data available in the literature. The main conclusions drawn by the model concerning metabolic control analysis are (1) gamma-ECS is indeed a rate-limiting step in GSH synthesis, but only if GSH-consuming enzymes are not taken into account. (2) At low demand, GSH-consuming enzymes exert significant flux-control on GSH synthesis whereas at high demand, supply and demand blocks share the control of flux. (3) In unstressed conditions, flux to GSH is controlled mainly by demand, so that gamma-ECS determines the degree of homeostasis of the GSH concentration. Under cadmium exposure, the GSH demand increases and flux-control is re-distributed almost equally between the supply and demand blocks. (4) To enhance phytochelatins synthesis without depleting the GSH pool, at least two enzymes (gamma-ECS and PCS) should be increased and/or, alternatively, a branching flux (GSH-S-transferases) could be partially diminished.  相似文献   

13.
Glutathione (GSH) is the major low molecular weight thiol in plants with different functions in stress defence and the transport and storage of sulphur. Its synthesis is dependent on the supply of its constituent amino acids cysteine, glutamate, and glycine. GSH is a feedback inhibitor of the sulphate assimilation pathway, the primary source of cysteine synthesis. Sulphate assimilation has been analysed in transgenic poplars (Populus tremula x P. alba) overexpressing gamma-glutamylcysteine synthetase, the key enzyme of GSH synthesis, and the results compared with the effects of exogenously added GSH. Although foliar GSH levels were 3-4-fold increased in the transgenic plants, the activities of enzymes of sulphate assimilation, namely ATP sulphurylase, adenosine 5'-phosphosulphate reductase (APR), sulphite reductase, serine acetyltransferase, and O-acetylserine (thiol)lyase were not affected in three transgenic lines compared with the wild type. Also the mRNA levels of these enzymes were not altered by the increased GSH levels. By contrast, an increase in GSH content due to exogenously supplied GSH resulted in a strong reduction in APR activity and mRNA accumulation. This feedback regulation was reverted by simultaneous addition of O-acetylserine (OAS). However, OAS measurements revealed that OAS cannot be the only signal responsible for the lack of feedback regulation of APR by GSH in the transgenic poplars.  相似文献   

14.
植物对重金属镉的耐受机制   总被引:48,自引:0,他引:48  
镉离子(Cd^2+)具有强植物毒性,抑制植物生长,甚至使植物死亡。由于长期的环境选择和适应进化,植物发展出耐受机制,可减轻或避免Cd^2+的毒害。硫转运蛋白、硫还原相关酶类以及半胱氨酸、谷胱甘肽和植物螯合肽合成基因的表达受Cd^2+调控。同时这些基因的过表达也能提高植物对Cd^2+的耐性。植物抗氧化系统对Cd^2+胁迫诱发的活性氧的清除作用,具转运Cd^2+活性的质膜转运蛋白促进Cd^2+经共质体途径向木质部运输、装载,而后随蒸腾流向地上部迁移,具转运Cd^2+活性的液泡膜转运蛋白促进Cd^2+进入液泡的隔离作用,都在植物对Cd^2+的耐性中起作用。  相似文献   

15.
Managing sulphur metabolism in plants   总被引:12,自引:0,他引:12  
  相似文献   

16.
17.
Plants cultivated with Cd can produce large amounts of phytochelatins. Since these compounds contain much cysteine, these plants should have an increased rate of assimilatory sulfate reduction, the biosynthetic pathway leading to cysteine. To test this prediction, the effect of Cd on growth, sulfate assimilation in vivo and extractable activity of two enzymes of sulfate reduction, ATP-sulfurylase (EC 2.7.7.4) and adenosine 5′-phosphosulfate sulfotransferase were measured in maize (Zea mays L.) seedlings. For comparison, nitrate reductase activity was determined. In 9-day-old cultures, the increase in fresh and dry weight was significantly inhibited by 50 micromolar and more Cd in the roots and by 100 and 200 micromolar in the shoots. Seedlings cultivated with 50 micromolar Cd for 5 days incorporated more label from 35SO42− into higher molecular weight compounds than did controls, indicating that the predicted increase in the rate of assimilatory sulfate reduction took place. Consistent with this finding, an increased level of the extractable activity of both ATP-sulfurylase and adenosine 5′-phosphosulfate sulfotransferase was measured in the roots of these plants at 50 micromolar Cd and at higher concentrations. This effect was reversible after removal of Cd from the nutrient solution. In the leaves, a significant positive effect of Cd was detected at 5 micromolar for ATP-sulfurylase and at 5 and 20 micromolar for adenosine 5′-phosphosulfate sulfotransferase. At higher Cd concentrations, both enzyme activities were at levels below the control. Nitrate reductase (EC 1.6.6.1) activity decreased at 50 micromolar or more Cd in the roots and was similarly affected as ATP-sulfurylase activity in the primary leaves.  相似文献   

18.
Primary cultures of oligodendrocytes were used to study the toxic effects of cadmium chloride. Cell viability was evaluated by the mitochondrial dehydrogenase activity and confirmed by propidium iodide (PI) fluorescence staining. The expression of the 72 kDa stress protein, HSP72, was assayed by Western blot analysis. The results showed that Cd(2+)-induced toxicity was dependent on the time and dose of exposure, as well as on the developmental stage of the cultures. Oligodendrocyte progenitors were more vulnerable to Cd(2+) toxicity than were mature oligodendrocytes. Mature oligodendrocytes accumulated relatively higher levels of Cd(2+) than did progenitors, as determined by (109)CdCl(2) uptake; treatment with the metal ion caused a more pronounced reduction in intracellular glutathione levels and significantly higher free radical accumulation in progenitors. The latter could explain the observed differences in Cd(2+) susceptibility. HSP72 protein expression was increased both in progenitors and in mature cells exposed to Cd(2+). Pretreatment with N-acetylcysteine, a thiocompound with antioxidant activity and a precursor of glutathione, prevented Cd(2+)-induced (i) reduction in glutathione levels and (ii) induction of HSP72 and diminished (i) Cd(2+) uptake and (ii) Cd(2+)-evoked cell death. In contrast, buthionine sulfoximine, an inhibitor of gamma-glutamyl-cysteine synthetase, depleted glutathione, and potentiated the toxic effect of Cd(2+). These results strongly suggest that Cd(2+)-induced cytotoxicity in oligodendrocytes is mediated by reactive oxygen species and is modulated by glutathione levels.  相似文献   

19.
20.
The metabolic pathway for histidine biosynthesis is interesting from an evolutionary perspective because of the diversity of gene organizations and protein structures involved. Hydrolysis of phosphoribosyl-AMP, the third step in the histidine biosynthetic pathway, is carried out by PR-AMP cyclohydrolase, the product of the hisI gene. The three-dimensional structure of PR-AMP cyclohydrolase from Methanobacterium thermoautotrophicum was solved and refined to 1.7 A resolution. The enzyme is a homodimer. The position of the Zn(2+)-binding site that is essential for catalysis was inferred from the positions of bound Cd(2+) ions, which were part of the crystallization medium. These metal binding sites include three cysteine ligands, two from one monomer and the third from the second monomer. The enzyme remains active when Cd(2+) is substituted for Zn(2+). The likely binding site for Mg(2+), also necessary for activity in a homologous cyclohydrolase, was also inferred from Cd(2+) positions and is comprised of aspartic acid side chains. The putative substrate-binding cleft is formed at the interface between the two monomers of the dimer. This fact, combined with the localization of the Zn(2+)-binding site, indicates that the enzyme is an obligate dimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号