共查询到20条相似文献,搜索用时 15 毫秒
1.
Mataraza JM Briggs MW Li Z Frank R Sacks DB 《Biochemical and biophysical research communications》2003,305(2):315-321
IQGAP1 is a multi-domained protein that integrates signaling of the Rho family GTPase Cdc42 with regulation of the cytoskeleton. Using SPOT analysis and in vitro peptide competition assays we have identified a 24 amino acid region of IQGAP1 that is necessary for Cdc42 binding. Both in vitro and in vivo analyses reveal that deletion of this sequence abolishes binding of IQGAP1 to Cdc42. In addition, the ability of IQGAP1 to increase the amount of active Cdc42 in cells is abrogated upon removal of this region. An IQGAP1 mutant lacking the Cdc42 binding site mislocalizes to the cell periphery. These observations specifically define a short sequence of IQGAP1 that is required for its interaction with Cdc42 and demonstrate that Cdc42 binding is necessary for the normal subcellular distribution of IQGAP1. 相似文献
2.
Toshihide Kimura Mami Yamaoka Shigeki Taniguchi Mitsuhiro Okamoto Masahiro Takei Tomomi Ando Akihiro Iwamatsu Takashi Watanabe Kozo Kaibuchi Toshimasa Ishizaki Ichiro Niki 《Molecular and cellular biology》2013,33(24):4834-4843
Recruitment of specific molecules to a specific membrane site is essential for communication between specialized membranous organelles. In the present study, we identified IQGAP1 as a novel GDP-bound-Rab27a-interacting protein. We found that IQGAP1 interacts with GDP-bound Rab27a when it forms a complex with GTP-bound Cdc42. We also found that IQGAP1 regulates the endocytosis of insulin secretory membranes. Silencing of IQGAP1 inhibits both endocytosis and the glucose-induced redistribution of endocytic machinery, including Rab27a and its binding protein coronin 3. These processes can also be inhibited by disruption of the trimeric complex with dominant negative IQGAP1 and Cdc42. These results indicate that activation of Cdc42 in response to the insulin secretagogue glucose recruits endocytic machinery to IQGAP1 at the cell periphery and regulates endocytosis at this membrane site. 相似文献
3.
IQGAP1 is a component of Cdc42 signaling to the cytoskeleton 总被引:4,自引:0,他引:4
The Ras-GAP related protein IQGAP1 binds several proteins, including actin, calmodulin, E-cadherin and the Rho family GTPase Cdc42. To gain insight into its in vivo function, IQGAP1 was overexpressed in mammalian cells. Transfection of IQGAP1 significantly increased the levels of active, GTP-bound Cdc42, resulting in the formation of peripheral actin microspikes. By contrast, transfection of an IQGAP1 mutant lacking part of the GAP-related domain (IQGAP1deltaGRD) substantially decreased the amount of GTP-bound Cdc42 in cell lysates. Consistent with these findings, IQGAP1DeltaGRD blocked Cdc42 function in cells that stably overexpress constitutively active Cdc42 and abrogated the effect of bradykinin on Cdc42. In cells transfected with IQGAP1deltaGRD, bradykinin was unable to activate Cdc42, translocate Cdc42 to the membrane fraction, or induce filopodia production. IQGAP1deltaGRD transfection altered cellular morphology, producing small, round cells that closely resemble Cdc42-/- cells. Some insight into the mechanism was provided by in vitro analysis, which revealed that IQGAP1deltaGRD increased the intrinsic GTPase activity of Cdc42, thereby increasing the amount of inactive, GDP-bound Cdc42. These data imply that IQGAP1 has a crucial role in transducing Cdc42 signaling to the cytoskeleton. 相似文献
4.
Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170 总被引:27,自引:0,他引:27
Fukata M Watanabe T Noritake J Nakagawa M Yamaga M Kuroda S Matsuura Y Iwamatsu A Perez F Kaibuchi K 《Cell》2002,109(7):873-885
Linkage of microtubules to special cortical regions is essential for cell polarization. CLIP-170 binds to the growing ends of microtubules and plays pivotal roles in orientation. We have found that IQGAP1, an effector of Rac1 and Cdc42, interacts with CLIP-170. In Vero fibroblasts, IQGAP1 localizes at the polarized leading edge. Expression of carboxy-terminal fragment of IQGAP1, which includes the CLIP-170 binding region, delocalizes GFP-CLIP-170 from the tips of microtubules and alters the microtubule array. Activated Rac1/Cdc42, IQGAP1, and CLIP-170 form a tripartite complex. Furthermore, expression of an IQGAP1 mutant defective in Rac1/Cdc42 binding induces multiple leading edges. These results indicate that Rac1/Cdc42 marks special cortical spots where the IQGAP1 and CLIP-170 complex is targeted, leading to a polarized microtubule array and cell polarization. 相似文献
5.
To infect host cells, Salmonella utilizes an intricate system to manipulate the actin cytoskeleton and promote bacterial uptake. Proteins injected into the host cell by Salmonella activate the Rho GTPases, Rac1 and Cdc42, to induce actin polymerization. Following uptake, a different set of proteins inactivates Rac1 and Cdc42, returning the cytoskeleton to normal. Although the signaling pathways allowing Salmonella to invade host cells are beginning to be understood, many of the contributing factors remain to be elucidated. IQGAP1 is a multidomain protein that influences numerous cellular functions, including modulation of Rac1/Cdc42 signaling and actin polymerization. Here, we report that IQGAP1 regulates Salmonella invasion. Through its interaction with actin, IQGAP1 co-localizes with Rac1, Cdc42, and actin at sites of bacterial uptake, whereas infection promotes the interaction of IQGAP1 with both Rac1 and Cdc42. Knockdown of IQGAP1 significantly reduces Salmonella invasion and abrogates activation of Cdc42 and Rac1 by Salmonella. Overexpression of IQGAP1 significantly increases the ability of Salmonella to enter host cells and required interaction with both actin and Cdc42/Rac1. Together, these data identify IQGAP1 as a novel regulator of Salmonella invasion. 相似文献
6.
Human IQGAP1 is a widely expressed 190-kDa Cdc42-, Rac1-, and calmodulin-binding protein that interacts with F-actin in vivo and that can cross-link F-actin microfilaments in vitro. Recent results have implicated IQGAP1 as a component of pathways via which Cdc42 or Rac1 modulates cadherin-based cell adhesion (S. Kuroda et al., Science 281:832-835, 1998), whereas yeast IQGAP-related proteins have been found to play essential roles during cytokinesis. To identify critical in vivo functions of IQGAP1, we generated deficient mice by gene targeting. We demonstrate that IQGAP1 null mutants arise at normal frequency and show no obvious defects during development or for most of their adult life. Loss of IQGAP1 also does not affect tumor development or tumor progression, but mutant mice exhibit a significant (P < 0.0001) increase in late-onset gastric hyperplasia relative to wild-type animals of the same genetic background. While we cannot exclude that functional redundancy with IQGAP2 contributes to the lack of developmental phenotypes, the restricted expression pattern of IQGAP2 is not obviously altered in adult IQGAP1 mutant mice. Thus, IQGAP1 does not serve any essential nonredundant functions during murine development but may serve to maintain the integrity of the gastric mucosa in older animals. 相似文献
7.
S Kuroda M Fukata M Nakagawa K Kaibuchi 《Biochemical and biophysical research communications》1999,262(1):1-6
Cell-cell adhesion is a dynamic process in various cellular and developmental situations. Cadherins, well-known Ca(2+)-dependent adhesion molecules, are thought to play a major role in the regulation of cell-cell adhesion. However, the molecular mechanism underlying the rearrangement of cadherin-mediated cell-cell adhesion is largely unknown. Cdc42 and Rac1, belonging to the Rho small GTPase family, have recently been shown to be involved in the regulation of cell-cell adhesion. In addition, IQGAP1, an effector for Cdc42 and Rac1, has been shown to regulate the cadherin function through interaction with beta-catenin, a molecule associated with cadherin. In this review, we will summarize the mode of action of Cdc42 and Rac1 as well as IQGAP1 as molecular switches for the cadherin function, and then discuss physiological processes in which the Cdc42/Rac1/IQGAP1 system may be involved. 相似文献
8.
IQGAP1, a Rac- and Cdc42-binding Protein,
Directly Binds and Cross-links Microfilaments 总被引:13,自引:0,他引:13 下载免费PDF全文
Anne-Marie Bashour Aaron T. Fullerton Matthew J. Hart George S. Bloom 《The Journal of cell biology》1997,137(7):1555-1566
Activated forms of the GTPases, Rac and Cdc42, are known to stimulate formation of microfilament-rich lamellipodia and filopodia, respectively, but the underlying mechanisms have remained obscure. We now report the purification and characterization of a protein, IQGAP1, which is likely to mediate effects of these GTPases on microfilaments. Native IQGAP1 purified from bovine adrenal comprises two ~190-kD subunits per molecule plus substoichiometric calmodulin. Purified IQGAP1 bound directly to F-actin and cross-linked the actin filaments into irregular, interconnected bundles that exhibited gel-like properties. Exogenous calmodulin partially inhibited binding of IQGAP1 to F-actin, and was more effective in the absence, than in the presence of calcium. Immunofluorescence microscopy demonstrated cytochalasin D–sensitive colocalization of IQGAP1 with cortical microfilaments. These results, in conjunction with prior evidence that IQGAP1 binds directly to activated Rac and Cdc42, suggest that IQGAP1 serves as a direct molecular link between these GTPases and the actin cytoskeleton, and that the actin-binding activity of IQGAP1 is regulated by calmodulin. 相似文献
9.
IQGAP1 contains a number of protein recognition motifs through which it binds to targets. Several in vitro studies have documented that IQGAP1 interacts directly with calmodulin, actin, E-cadherin, beta-catenin, and the small GTPases Cdc42 and Rac. Nevertheless, direct demonstration of in vivo function of mammalian IQGAP1 is limited. Using a novel assay to evaluate in vivo function of IQGAP1, we document here that microinjection of IQGAP1 into early Xenopus embryos generates superficial ectoderm lesions at late blastula stages. This activity was retained by the mutated variants of IQGAP1 in which the calponin homology domain or the WW domain was deleted. By contrast, deletion of the IQ (IQGAP1-DeltaIQ), Ras-GAP-related (IQGAP1-DeltaGRD), or C-terminal (IQGAP1-DeltaC) domains abrogated the effect of IQGAP1 on the embryos. None of the latter mutants bound Cdc42, suggesting that the binding of Cdc42 by IQGAP1 is critical for its function. Moreover, overexpression of IQGAP1, but not IQGAP1-DeltaGRD, significantly increased the amount of active Cdc42 in embryonic cells. Co-injection of wild type IQGAP1 with dominant negative Cdc42, but not the dominant negative forms of Rac or Rho, blocked the effect of IQGAP1 on embryonic ectoderm. Together these data indicate that the activity of IQGAP1 in embryonic ectoderm requires Cdc42 function. 相似文献
10.
A family of proteins known as IQGAPs have been identified in yeast, amebas and mammals. IQGAPs are multidomain molecules that contain several protein-interacting motifs which mediate binding to target proteins. Mammalian IQGAP1 is a component of signaling networks that are integral to maintaining cytoskeletal architecture and cell-cell adhesion. Published data suggest that IQGAP1 is a scaffolding protein that modulates cross-talk among diverse pathways in complex regulatory circuits. These pathways include modulating the actin cytoskeleton, mediating signaling by Rho family GTPases and calmodulin, regulating E-cadherin and beta-catenin function and organizing microtubules. 相似文献
11.
Cdc42 protein acts upstream of IQGAP1 and regulates cytokinesis in mouse oocytes and embryos 总被引:1,自引:0,他引:1
Bielak-Zmijewska A Kolano A Szczepanska K Maleszewski M Borsuk E 《Developmental biology》2008,322(1):21-32
Cdc42 and Rac1 Rho family GTPases, and their interacting protein IQGAP1 are the key regulators of cell polarity. We examined the role of Cdc42 and IQGAP1 in establishing the polarity of mouse oocyte and regulation of meiotic and mitotic divisions. We showed that Cdc42 was localized on the microtubules of meiotic and mitotic spindle and in the cortex of mouse oocytes and cleaving embryos. IQGAP1 was present in the cytoplasm and cortex of growing and fully-grown oocytes. During maturation it disappeared from the cortex and during meiotic and mitotic cytokinesis it concentrated in the contractile ring. Toxin B inhibition of the binding activity of Cdc42 changed the localization of IQGAP1, inhibited emission of the first polar body, and caused disappearance of the cortical actin without affecting the migration of meiotic spindle. This indicates, that in maturing oocytes accumulation of cortical actin is not indispensable for spindle migration. In zygotes treated with toxin B actin cytoskeleton was rearranged and the first and/or subsequent cytokinesis were inhibited. Our results indicate that Cdc42 acts upstream of IQGAP1 and is involved in regulation of cytokinesis in mouse oocytes and cleaving embryos, rather than in establishing the polarity of the oocyte. 相似文献
12.
Involvement of IQGAP1, an effector of Rac1 and Cdc42 GTPases, in cell-cell dissociation during cell scattering 总被引:5,自引:0,他引:5 下载免费PDF全文
Fukata M Nakagawa M Itoh N Kawajiri A Yamaga M Kuroda S Kaibuchi K 《Molecular and cellular biology》2001,21(6):2165-2183
We have previously proposed that IQGAP1, an effector of Rac1 and Cdc42, negatively regulates cadherin-mediated cell-cell adhesion by interacting with beta-catenin and by causing the dissociation of alpha-catenin from cadherin-beta-catenin-alpha-catenin complexes and that activated Rac1 and Cdc42 positively regulate cadherin-mediated cell-cell adhesion by inhibiting the interaction of IQGAP1 with beta-catenin. However, it remains to be clarified in which physiological processes the Rac1-Cdc42-IQGAP1 system is involved. We here examined whether the Rac1-IQGAP1 system is involved in the cell-cell dissociation of Madin-Darby canine kidney II cells during 12-O-tetradecanoylphorbol-13-acetate (TPA)- or hepatocyte growth factor (HGF)-induced cell scattering. By using enhanced green fluorescent protein (EGFP)-tagged alpha-catenin, we found that EGFP-alpha-catenin decreased prior to cell-cell dissociation during cell scattering. We also found that the Rac1-GTP level decreased after stimulation with TPA and that the Rac1-IQGAP1 complexes decreased, while the IQGAP1-beta-catenin complexes increased during action of TPA. Constitutively active Rac1 and IQGAP1 carboxyl terminus, a putative dominant-negative mutant of IQGAP1, inhibited the disappearance of alpha-catenin from sites of cell-cell contact induced by TPA. Taken together, these results indicate that alpha-catenin is delocalized from cell-cell contact sites prior to cell-cell dissociation induced by TPA or HGF and suggest that the Rac1-IQGAP1 system is involved in cell-cell dissociation through alpha-catenin relocalization. 相似文献
13.
Spatially distinct binding of Cdc42 to PAK1 and N-WASP in breast carcinoma cells 总被引:3,自引:0,他引:3 下载免费PDF全文
Parsons M Monypenny J Ameer-Beg SM Millard TH Machesky LM Peter M Keppler MD Schiavo G Watson R Chernoff J Zicha D Vojnovic B Ng T 《Molecular and cellular biology》2005,25(5):1680-1695
While a significant amount is known about the biochemical signaling pathways of the Rho family GTPase Cdc42, a better understanding of how these signaling networks are coordinated in cells is required. In particular, the predominant subcellular sites where GTP-bound Cdc42 binds to its effectors, such as p21-activated kinase 1 (PAK1) and N-WASP, a homolog of the Wiskott-Aldritch syndrome protein, are still undetermined. Recent fluorescence resonance energy transfer (FRET) imaging experiments using activity biosensors show inconsistencies between the site of local activity of PAK1 or N-WASP and the formation of specific membrane protrusion structures in the cell periphery. The data presented here demonstrate the localization of interactions by using multiphoton time-domain fluorescence lifetime imaging microscopy (FLIM). Our data here establish that activated Cdc42 interacts with PAK1 in a nucleotide-dependent manner in the cell periphery, leading to Thr-423 phosphorylation of PAK1, particularly along the lengths of cell protrusion structures. In contrast, the majority of GFP-N-WASP undergoing FRET with Cy3-Cdc42 is localized within a transferrin receptor- and Rab11-positive endosomal compartment in breast carcinoma cells. These data reveal for the first time distinct spatial association patterns between Cdc42 and its key effector proteins controlling cytoskeletal remodeling. 相似文献
14.
Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration 总被引:11,自引:0,他引:11
Watanabe T Wang S Noritake J Sato K Fukata M Takefuji M Nakagawa M Izumi N Akiyama T Kaibuchi K 《Developmental cell》2004,7(6):871-883
Rho family GTPases, particularly Rac1 and Cdc42, are key regulators of cell polarization and directional migration. Adenomatous polyposis coli (APC) is also thought to play a pivotal role in polarized cell migration. We have found that IQGAP1, an effector of Rac1 and Cdc42, interacts directly with APC. IQGAP1 and APC localize interdependently to the leading edge in migrating Vero cells, and activated Rac1/Cdc42 form a ternary complex with IQGAP1 and APC. Depletion of either IQGAP1 or APC inhibits actin meshwork formation and polarized migration. Depletion of IQGAP1 or APC also disrupts localization of CLIP-170, a microtubule-stabilizing protein that interacts with IQGAP1. Taken together, these results suggest a model in which activation of Rac1 and Cdc42 in response to migration signals leads to recruitment of IQGAP1 and APC which, together with CLIP-170, form a complex that links the actin cytoskeleton and microtubule dynamics during cell polarization and directional migration. 相似文献
15.
Florian Gnad Amy Young Wei Zhou Karen Lyle Christy C. Ong Matthew P. Stokes Jeffrey C. Silva Marcia Belvin Lori S. Friedman Hartmut Koeppen Audrey Minden Klaus P. Hoeflich 《Molecular & cellular proteomics : MCP》2013,12(8):2070-2080
Although K-Ras, Cdc42, and PAK4 signaling are commonly deregulated in cancer, only a few studies have sought to comprehensively examine the spectrum of phosphorylation-mediated signaling downstream of each of these key signaling nodes. In this study, we completed a label-free quantitative analysis of oncogenic K-Ras, activated Cdc42, and PAK4-mediated phosphorylation signaling, and report relative quantitation of 2152 phosphorylated peptides on 1062 proteins. We define the overlap in phosphopeptides regulated by K-Ras, Cdc42, and PAK4, and find that perturbation of these signaling components affects phosphoproteins associated with microtubule depolymerization, cytoskeletal organization, and the cell cycle. These findings provide a resource for future studies to characterize novel targets of oncogenic K-Ras signaling and validate biomarkers of PAK4 inhibition.The Ras oncoproteins are small monomeric GTPases that transduce mitogenic signals from cell surface receptor tyrosine kinases (RTKs) to intracellular serine/threonine kinases. Approximately thirty percent of human tumors harbor a somatic gain-of-function mutation in one of three RAS genes, resulting in the constitutive activation of Ras signaling and the aberrant hyperactivation of growth-promoting effector pathways (1). Designing therapeutic agents that directly target Ras has been challenging (2, 3), and thus clinical development efforts have focused on targeting effector pathways downstream of Ras. The Raf-MEK-ERK and PI3K-Akt effector pathways have been extensively studied and several small molecule inhibitors targeting these pathways are currently under clinical evaluation (4, 5). However, biochemical studies and mouse models indicate that several additional effector pathways are essential for Ras-driven transformation and tumorigenesis (6–11). Hence, a comprehensive characterization of these effector pathways may reveal additional druggable targets.The Rho GTPase Cdc42 lies downstream of Ras (12–14) and regulates many cellular processes that are commonly perturbed in cancer, including migration, polarization, and proliferation (15) (Fig. 1A). Importantly, Cdc42 is overexpressed in several types of human cancer (16–20) and is required for Ras-driven cellular transformation (13, 21, 22). Recent studies show that genetic ablation of Cdc42 impairs Ras-driven tumorigenesis (13), indicating the potential of Cdc42 and its effectors as drug targets in Ras mutant tumors.Open in a separate windowFig. 1.Experimental workflow.
A, K-Ras is a small GTPase that regulates the activity of a variety of downstream proteins including the Rho GTPase Cdc42. The PAK4 serine/threonine kinase is a direct effector of Cdc42 and regulates actin reorganization, microtubule stability, and cell polarity. B, To measure large-scale phosphorylation changes induced by constitutive K-Ras or Cdc42 signaling or PAK4 ablation, the quantitative label-free PTMscan® approach was employed (Cell Signaling Technology). Briefly, for each condition extracted proteins were digested with trypsin and separated from non-peptide material by solid-phase extraction with Sep-Pak C18 cartridges. Three phosphorylation motif antibodies were used serially to isolate phosphorylated peptides in independent immunoaffinity purifications (CDK substrate motif [K R]-pS-P-X-[K R], CK substrate motif pT-[D E]-X-[D E], PKD substrate motif l-X-R-X-X-p[S T]). The samples were run in duplicate and tandem mass spectra were collected with an LTQ-Orbitrap hybrid mass spectrometer. pLPC is an empty vector control.In particular, the p21-activated kinases (PAKs) are Cdc42 effectors that have generated significant interest (23, 24), as they are central components of key oncogenic signaling pathways and regulate cytoskeletal organization, cell migration, and nuclear signaling (25). The PAK family is comprised of six members and is subdivided into two groups (Groups I and II) based on sequence and structural homology. Group I PAKs (PAK1–3) are relatively well characterized, however, much less is known regarding the function and regulation of Group II PAKs (PAK4–6). The kinase domains of Group I and II PAKs share only about 50% identity, suggesting the two groups may recognize distinct substrates and govern unique cellular processes (26).The Group II PAK family member PAK4 is of particular interest as it is overexpressed or genetically amplified in several lung, colon, prostate, pancreas, and breast tumor cell lines and samples (26–30). Furthermore, functional studies have implicated PAK4 in cell transformation, cell invasion, and migration (27, 31). Xenograft studies in athymic mice show an important role for PAK4 in mediating Cdc42- or K-Ras-driven tumor formation, highlighting a critical role for Pak4 downstream of these GTPases (32). Given its roles in transformation, tumorigenesis, and oncogenic signaling, there is significant interest in targeting PAK4 therapeutically (23). PAK4 binds and phosphorylates several proteins involved in cytoskeletal organization and apoptosis, including Lim domain kinase 1 (LIMK1) (33), guanine nucleotide exchange factor-H1 (GEF-H1) (34), Raf-1 (35), and Bad (36). However, the Group I PAK family member PAK1 also phosphorylates several of these PAK4 targets (37). Thus, there remains a need to identify robust and selective pharmacodynamic biomarkers for PAK4 inhibition.Despite the importance of PAK4 and its upstream regulators in cancer development, few studies have sought to comprehensively characterize the spectrum of K-Ras, Cdc42, or PAK4 mediated phosphorylation signaling (37–39). Recent developments in mass spectrometry allow the in-depth identification and quantitation of thousands of phosphorylation sites (40–43). The majority of large-scale efforts have aimed to identify the basal phosphoproteomes of different species (44, 45) or tissues (46) to characterize global steady-state phosphorylation. However, this methodology can also be applied to quantify perturbed phosphorylation regulation in cancer signaling pathways (40, 47–49), and has the potential to reveal novel biomarkers of oncogenic signaling.In this study, we completed a label-free quantitative analysis of K-Ras, Cdc42, and PAK4 phosphorylation signaling using the PTMScan® method, which has proven as robust and reproducible quantitation technology (50, 51). We quantified phosphorylation levels in wild-type and PAK4 knockout NIH3T3 cells expressing oncogenic K-Ras, activated Cdc42, or an empty vector control to elucidate the molecular pathways and functions modulated by these key signaling proteins. We report relative quantitation of 2152 phosphorylated peptides on 1062 proteins among the different conditions, and find that many of the regulated phosphoproteins are associated with microtubule depolymerization, cytoskeletal organization, and the cell cycle. To our knowledge, our study is the first to examine the overlap among signaling networks regulated by K-Ras, Cdc42, and PAK4, and provides a resource for future studies to further interrogate the perturbation of this signaling pathway. 相似文献
16.
Directional sensing requires G beta gamma-mediated PAK1 and PIX alpha-dependent activation of Cdc42 总被引:20,自引:0,他引:20
Li Z Hannigan M Mo Z Liu B Lu W Wu Y Smrcka AV Wu G Li L Liu M Huang CK Wu D 《Cell》2003,114(2):215-227
Efficient chemotaxis requires directional sensing and cell polarization. We describe a signaling mechanism involving G beta gamma, PAK-associated guanine nucleotide exchange factor (PIX alpha), Cdc42, and p21-activated kinase (PAK) 1. This pathway is utilized by chemoattractants to regulate directional sensing and directional migration of myeloid cells. Our results suggest that G beta gamma binds PAK1 and, via PAK-associated PIX alpha, activates Cdc42, which in turn activates PAK1. Thus, in this pathway, PAK1 is not only an effector for Cdc42, but it also functions as a scaffold protein required for Cdc42 activation. This G beta gamma-PAK1/PIX alpha/Cdc42 pathway is essential for the localization of F-actin formation to the leading edge, the exclusion of PTEN from the leading edge, directional sensing, and the persistent directional migration of chemotactic leukocytes. Although ligand-induced production of PIP(3) is not required for activation of this pathway, PIP(3) appears to localize the activation of Cdc42 by the pathway. 相似文献
17.
Morreale A Venkatesan M Mott HR Owen D Nietlispach D Lowe PN Laue ED 《Nature structural biology》2000,7(5):384-388
The Rho family GTPases, Cdc42, Rac and Rho, regulate signal transduction pathways via interactions with downstream effector proteins. We report here the solution structure of Cdc42 bound to the GTPase binding domain of alphaPAK, an effector of both Cdc42 and Rac. The structure is compared with those of Cdc42 bound to similar fragments of ACK and WASP, two effector proteins that bind only to Cdc42. The N-termini of all three effector fragments bind in an extended conformation to strand beta2 of Cdc42, and contact helices alpha1 and alpha5. The remaining residues bind to switches I and II of Cdc42, but in a significantly different manner. The structure, together with mutagenesis data, suggests reasons for the specificity of these interactions and provides insight into the mechanism of PAK activation. 相似文献
18.
P21-activated kinase 1 (PAK1) is activated by binding to GTP-bound Rho GTPases Cdc42 and Rac via its CRIB domain. Here, we provide evidence that S79 in the CRIB domain of PAK1 is not directly involved in this binding but is crucial for PAK1 activation. S79A mutation reduces the binding affinity of PAK1 for the GTPases and inhibits autophosphorylation and kinase activity of PAK1. Thus, this mutation abrogates the ability of PAK1 to induce changes in cell morphology and motility and to promote malignant transformation of prostate epithelial cells. We also show that growth of the prostate cancer cell line PC3 is inhibited by the treatment of a PAK1-inhibiting peptide comprising 19 amino acids centered on S79, but not by the PAK1 peptide containing the S79A mutation, and that this growth inhibition is correlated with reduced autophosphorylation activity of PAK1. Together, these findings demonstrate a significant role of S79 in PAK1 activation and provide evidence for a novel mechanism of the CRIB-mediated interaction of PAK1 with Cdc42 and Rac. 相似文献
19.
Phosphorylation of IQGAP1 modulates its binding to Cdc42, revealing a new type of rho-GTPase regulator 总被引:1,自引:0,他引:1
Grohmanova K Schlaepfer D Hess D Gutierrez P Beck M Kroschewski R 《The Journal of biological chemistry》2004,279(47):48495-48504
The Rho-GTPase Cdc42 is important for the establishment and maintenance of epithelial polarity. Signaling from Cdc42 is propagated via its effector molecules that specifically bind to Cdc42 in the GTP-bound form. The cell-cell contact regulator and actin-binding protein IQGAP1 is described as effector of Cdc42 and Rac. Unexpectedly, we show in this study that IQGAP1 bound also directly nucleotide-depleted Cdc42 (Cdc42-ND). This interaction was enhanced in the presence of phosphatase inhibitors and in epithelial cells without cell-cell contacts. Tandem mass spectrometry analysis and immunoprecipitation experiments revealed that IQGAP1 was Ser1443-phosphorylated in vivo, potentially by protein kinase Cepsilon and upon loss of cell-cell contacts. In addition, we identified two independent domains of the IQGAP1 C terminus that bound exclusively Cdc42-ND. These domains interacted with each other, favoring the binding to Cdc42-GTP. Moreover, phosphorylation on Ser1443 strongly inhibited this intramolecular interaction. Thus, we unraveled a molecular mechanism that reveals a novel type of Rho-GTPase regulator. We propose that, depending on its phosphorylation state, IQGAP1 might serve as an effector or sequester nucleotide-free Cdc42 to prevent signaling. 相似文献
20.
Izumi G Sakisaka T Baba T Tanaka S Morimoto K Takai Y 《The Journal of cell biology》2004,166(2):237-248
E-cadherin is a key cell-cell adhesion molecule at adherens junctions (AJs) and undergoes endocytosis when AJs are disrupted by the action of extracellular signals. To elucidate the mechanism of this endocytosis, we developed here a new cell-free assay system for this reaction using the AJ-enriched fraction from rat liver. We found here that non-trans-interacting, but not trans-interacting, E-cadherin underwent endocytosis in a clathrin-dependent manner. The endocytosis of trans-interacting E-cadherin was inhibited by Rac and Cdc42 small G proteins, which were activated by trans-interacting E-cadherin or trans-interacting nectins, which are known to induce the formation of AJs in cooperation with E-cadherin. This inhibition was mediated by reorganization of the actin cytoskeleton by Rac and Cdc42 through IQGAP1, an actin filament-binding protein and a downstream target of Rac and Cdc42. These results indicate the important role of the Rac/Cdc42-IQGAP1 system in the dynamic organization and maintenance of the E-cadherin-based AJs. 相似文献