首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The LolCDE complex of Escherichia coli belongs to the ATP-binding cassette transporter superfamily and mediates the detachment of lipoproteins from the inner membrane, thereby initiating lipoprotein sorting to the outer membrane. The complex is composed of one copy each of membrane subunits LolC and LolE, and two copies of ATPase subunit LolD. To establish the conditions for reconstituting the LolCDE complex from separately isolated subunits, the ATPase activities of LolD and LolCDE were examined under various conditions. We found that both LolD and LolCDE were inactivated on incubation at 30 degrees C in a detergent solution. ATP and phospholipids protected LolCDE, but not LolD. Furthermore, phospholipids reactivated LolCDE even after its near complete inactivation. LolD was also protected from inactivation when membrane subunits and phospholipids were present together, suggesting the phospholipid-dependent reassembly of LolCDE subunits. Indeed, the functional lipoprotein-releasing machinery was reconstituted into proteoliposomes with E. coli phospholipids and separately purified LolC, LolD and LolE. Preincubation with phospholipids at 30 degrees C was essential for the reconstitution of the functional machinery from subunits. Strikingly, the lipoprotein-releasing activity was also reconstituted from LolE and LolD without LolC, suggesting the intriguing possibility that the minimum lipoprotein-releasing machinery can be formed from LolD and LolE. We report here the complete reconstitution of a functional ATP-binding cassette transporter from separately purified subunits.  相似文献   

2.
ATP-binding cassette transporter LolCDE was previously identified, by using reconstituted proteoliposomes, as an apparatus catalyzing the release of outer membrane-specific lipoproteins from the inner membrane of Escherichia coli. Mutations resulting in defective LolD were previously shown to be lethal for E. coli. The amino acid sequences of LolC and LolE are similar to each other, but the necessity of both proteins for lipoprotein release has not been proved. Moreover, previous reconstitution experiments did not clarify whether or not LolCDE is the sole apparatus for lipoprotein release. To address these issues, a chromosomal lolC-lolD-lolE null mutant harboring a helper plasmid that carries the lolCDE genes and a temperature-sensitive replicon was constructed. The mutant failed to grow at a nonpermissive temperature because of the depletion of LolCDE. In addition to functional LolD, both LolC and LolE were required for growth. At a nonpermissive temperature, the outer membrane lipoproteins were mislocalized in the inner membrane since LolCDE depletion inhibited the release of lipoproteins from the inner membrane. Furthermore, both LolC and LolE were essential for the release of lipoproteins. On the other hand, LolCDE depletion did not affect the translocation of a lipoprotein precursor across the inner membrane and subsequent processing to the mature lipoprotein. From these results, we conclude that the LolCDE complex is an essential ABC transporter for E. coli and the sole apparatus mediating the release of outer membrane lipoproteins from the inner membrane.  相似文献   

3.
The LolCDE complex of Escherichia coli belongs to the ABC transporter superfamily and initiates the lipoprotein sorting to the outer membrane by catalysing their release from the inner membrane. LolC and/or LolE, membrane subunits, recognize lipoproteins anchored to the outer surface of the inner membrane, while LolD hydrolyses ATP on its inner surface. We report here that ligand-bound LolCDE can be purified from the inner membrane in the absence of ATP. Liganded LolCDE represents an intermediate of the release reaction and exhibits higher affinity for ATP than the unliganded form. ATP binding to LolD weakens the interaction between LolCDE and lipoproteins and causes their dissociation in a detergent solution, while lipoprotein release from membranes requires ATP hydrolysis. Liganded LolCDE thus reveals molecular events brought about through ATP binding and hydrolysis. LolCDE is the first example of an ABC transporter purified with tightly bound native substrates. A single molecule of lipoprotein is found to bind per molecule of the LolCDE complex.  相似文献   

4.
The LolCDE complex is an ATP-binding cassette transporter that mediates the release of newly synthesized lipoproteins from the cytoplasmic membrane of gram-negative bacteria, which results in the initiation of outer-membrane sorting of lipoproteins through the Lol pathway. LolCDE is composed of one copy each of membrane subunits LolC and LolE, and two copies of nucleotide-binding subunit LolD. In this study, we examined the membrane topology of LolC and LolE by PhoA fusion analysis. Both LolC and LolE were found to have four transmembrane segments with a large periplasmic loop exposed to the periplasm. Despite similarities in sequence and topology, the accessibility of a sulfhydryl reagent to Cys introduced into the periplasmic loop suggested that the structure of the periplasmic region differs between LolC and LolE. Inhibition of the release of lipoproteins by the sulfhydryl reagent supported a previous proposal that LolC and LolE have distinct functions.  相似文献   

5.
In Gram-negative bacteria, lipoproteins are targeted to either the inner or outer membrane depending on their sorting signals. An ABC transporter LolCDE complex in Escherichia coli releases outer membrane-specific lipoproteins. Inner membrane-specific lipoproteins remain in the inner membrane because they each have a LolCDE-avoidance signal and therefore are not released by LolCDE. Only the LolC(A40P) mutation was previously found to cause outer membrane localization of lipoproteins despite their inner membrane-retention signals. Here, we isolated several new LolCDE mutants that cause outer membrane localization of lipoproteins possessing LolCDE-avoidance signals. Mutations were found in all three subunits of LolCDE, including the cytoplasmic ATPase subunit LolD. However, the extent of outer membrane sorting of inner membrane-specific lipoproteins differed depending on the mutation. Based on these observations, the molecular events underlying the recognition of lipoproteins by the LolCDE complex are discussed.  相似文献   

6.
Lipoproteins in Gram-negative bacteria are anchored to the inner or outer membrane via fatty acids attached to the N-terminal cysteine. The residue at position 2 determines the membrane specificity. An ATP binding cassette transporter LolCDE complex releases lipoproteins with residues other than aspartate at position 2 from the inner membrane, whereas those with aspartate at position 2 are rejected by LolCDE and therefore remain in the inner membrane. For further understanding of this rejection mechanism, a novel strategy was developed to select mutants in which lipoproteins with aspartate at position 2 are released. The isolated mutants carried an alanine to proline mutation at position 40 of LolC, a membrane subunit of the LolCDE complex. A significant portion of an inner membrane lipoprotein, L10P(DQ), was localized to the outer membrane when the LolC mutant was expressed. Periplasmic chaperone LolA formed a complex with the released L10P(DQ), which was subsequently incorporated into the outer membrane in a LolB-dependent manner, indicating that neither LolA nor LolB rejects lipoproteins with aspartate at position 2. The amount of the LolC mutant co-purified with LolD and LolE after membrane solubilization was reduced significantly. Taken together, these results indicate that the mutation causes destabilization of the LolCDE complex and concomitantly prevents the accurate recognition of lipoprotein-sorting signals.  相似文献   

7.
In Gram-negative bacteria, lipoproteins are transported to the outer membrane by the Lol system. In this process, lipoproteins are released from the inner membrane by the ABC transporter LolCDE and passed to LolA, a diffusible periplasmic molecular chaperone. Lipoproteins are then transferred to the outer membrane receptor protein, LolB, for insertion in the outer membrane. Here we describe the discovery and characterization of novel pyridineimidazole compounds that inhibit this process. Escherichia coli mutants resistant to the pyridineimidazoles show no cross-resistance to other classes of antibiotics and map to either the LolC or LolE protein of the LolCDE transporter complex. The pyridineimidazoles were shown to inhibit the LolA-dependent release of the lipoprotein Lpp from E. coli spheroplasts. These results combined with bacterial cytological profiling are consistent with LolCDE-mediated disruption of lipoprotein targeting to the outer membrane as the mode of action of these pyridineimidazoles. The pyridineimidazoles are the first reported inhibitors of the LolCDE complex, a target which has never been exploited for therapeutic intervention. These compounds open the door to further interrogation of the outer membrane lipoprotein transport pathway as a target for antimicrobial therapy.  相似文献   

8.
Lipoproteins in Escherichia coli are anchored to the periplasmic side of either the inner or the outer membrane by a lipid moiety that is covalently attached to the amino-terminal cysteine residue. Membrane specificity depends on a sorting signal at position 2 of the lipoprotein. Lipoproteins directed to the outer membrane are released from the inner membrane in an ATP-dependent manner through the formation of a complex with LolA, a periplasmic chaperone. However, the ATPase involved in this reaction has not been identified. Here we show, using reconstituted proteoliposomes, that a new complex, LolCDE, belonging to the ATP-binding cassette (ABC) transporter family, catalyses the release of lipoproteins in LolA- and sorting-signal-dependent manners. The LolCDE complex differs mechanistically from all other ABC transporters as it is not involved in the transmembrane transport of substrates. This new mechanism is evolutionarily conserved in other gram-negative bacteria.  相似文献   

9.
An ATP binding cassette transporter LolCDE complex releases lipoproteins from the inner membrane of Escherichia coli in an ATP-dependent manner, leading to the formation of a complex between a lipoprotein and a periplasmic chaperone, LolA. LolA is proposed to undergo a conformational change upon the lipoprotein binding. The lipoprotein is then transferred from the LolA-lipoprotein complex to the outer membrane via LolB. Unlike most ATP binding cassette transporters mediating the transmembrane flux of substrates, the LolCDE complex catalyzes the extrusion of lipoproteins anchored to the outer leaflet of the inner membrane. Moreover, the LolCDE complex is unique in that it can be purified as a liganded form, which is an intermediate of the lipoprotein release reaction. Taking advantage of these unique properties, we established an assay system that enabled the analysis of a single cycle of lipoprotein transfer reaction from liganded LolCDE to LolA in a detergent solution. The LolA-lipoprotein complex thus formed was physiologically functional and delivered lipoproteins to the outer membrane in a LolB-dependent manner. Vanadate, a potent inhibitor of the lipoprotein release from proteoliposomes, was found to inhibit the release of ADP from LolCDE. However, a single cycle of lipoprotein transfer occurred from vanadate-treated LolCDE to LolA, indicating that vanadate traps LolCDE at the energized state.  相似文献   

10.
The Lol system comprising five Lol proteins, LolA through LolE, sorts Escherichia coli lipoproteins to outer membranes. The LolCDE complex, an ATP binding cassette transporter in inner membranes, releases outer membrane-specific lipoproteins in an ATP-dependent manner, causing formation of the LolA-lipoprotein complex in the periplasm. LolA transports lipoproteins through the periplasm to LolB on outer membranes. LolB is itself a lipoprotein anchored to outer membranes, although the membrane anchor is functionally dispensable. LolB then localizes lipoproteins to outer membranes through largely unknown mechanisms. The crystal structure of LolB is similar to that of LolA, and it possesses a hydrophobic cavity that accommodates acyl chains of lipoproteins. To elucidate the molecular function of LolB, a periplasmic version of LolB, mLolB, was mutagenized at various conserved residues. Despite the lack of acyl chains, most defective mutants were insoluble. However, a derivative with glutamate in place of leucine 68 was soluble and unable to localize lipoproteins to outer membranes. This leucine is present in a loop protruding from mLolB into an aqueous environment, and no analogous loop is present in LolA. Thus, leucine 68 was replaced with other residues. Replacement by acidic, but not hydrophobic, residues generated for the first time mLolB derivatives that can accept but cannot localize lipoproteins to outer membranes. Moreover, deletion of the leucine with neighboring residues impaired the lipoprotein receptor activity. Based on these observations, the roles of the protruding loop of LolB in the last step of lipoprotein sorting are discussed.  相似文献   

11.
Escherichia coli lipoproteins are anchored to the periplasmic surface of the inner or outer membrane depending on the sorting signal. An ATP-binding cassette (ABC) transporter, LolCDE, releases outer membrane-specific lipoproteins from the inner membrane, causing the formation of a complex between the released lipoproteins and the periplasmic molecular chaperone LolA. When this complex interacts with outer membrane receptor LolB, the lipoproteins are transferred from LolA to LolB and then localized to the outer membrane. The structures of LolA and LolB are remarkably similar to each other. Both have a hydrophobic cavity consisting of an unclosed beta-barrel and an alpha-helical lid. Structural differences between the two proteins reveal the molecular mechanisms underlying the energy-independent transfer of lipoproteins from LolA to LolB. Strong inner membrane retention of lipoproteins occurs with Asp at position 2 and a few limited residues at position 3. The inner membrane retention signal functions as a Lol avoidance signal and inhibits the recognition of lipoproteins by LolCDE, thereby causing their retention in the inner membrane. The positive charge of phosphatidylethanolamine and the negative charge of Asp at position 2 are essential for Lol avoidance. The Lol avoidance signal is speculated to cause the formation of a tight lipoprotein-phosphatidylethanolamine complex that has five acyl chains and therefore cannot be recognized by LolCDE.  相似文献   

12.
Miyamoto A  Matsuyama S  Tokuda H 《FEBS letters》2002,528(1-3):193-196
Periplasmic molecular chaperone LolA and the inner membrane ATP binding cassette transporter LolCDE are essential for ATP-dependent release of outer membrane-directed lipoproteins from the inner membrane of Escherichia coli. A LolA(F47E) mutant carrying a Phe to Glu mutation at position 47 was defective in the release of lipoproteins from spheroplasts and proteoliposomes reconstituted with LolCDE. When incubated with proteoliposomes containing LolCDE, LolA remained in the supernatant whereas LolA(F47E) bound to proteoliposomes. This tight association of LolA(F47E) with LolCDE caused a dominant negative phenotype in vivo, suggesting that the LolA-LolCDE interaction is critical for lipoprotein release.  相似文献   

13.
The LolCDE complex of Escherichia coli releases outer membrane-specific lipoproteins from the inner membrane. Lipoproteins with Asp at +2 remain in the inner membrane since this residue functions as a LolCDE avoidance signal depending on phosphatidylethanolamine. We examined the effects of other phospholipids on lipoprotein sorting in proteoliposomes reconstituted with LolCDE and various synthetic phospholipids. The lipoprotein release and ATP hydrolysis were both low at 2 mM Mg(2+) but very high at 10 mM Mg(2+) in proteoliposomes containing cardiolipin alone. However, the Lol avoidance function was abolished at 10 mM Mg(2+), and the release of lipoproteins with Asp at +2 was as efficient as that of outer membrane-specific lipoproteins. The addition of phosphatidylethanolamine to cardiolipin stimulated the ATP hydrolysis and increased the Lol avoidance function of Asp at +2 at 2 mM Mg(2+). The addition of phosphatidylglycerol to cardiolipin nearly completely inhibited the release of lipoproteins with Asp at +2 even at 10 mM Mg(2+), while that of outer membrane-specific lipoproteins was not. Taken together, these results indicate that three major phospholipids of E. coli differently affect lipoprotein sorting and the activity of LolCDE.  相似文献   

14.
Escherichia coli lipoproteins are anchored to the periplasmic surface of the inner or outer membrane depending on the sorting signal. An ATP-binding cassette (ABC) transporter, LolCDE, releases outer membrane-specific lipoproteins from the inner membrane, causing the formation of a complex between the released lipoproteins and the periplasmic molecular chaperone LolA. When this complex interacts with outer membrane receptor LolB, the lipoproteins are transferred from LolA to LolB and then localized to the outer membrane. The structures of LolA and LolB are remarkably similar to each other. Both have a hydrophobic cavity consisting of an unclosed beta-barrel and an alpha-helical lid. Structural differences between the two proteins reveal the molecular mechanisms underlying the energy-independent transfer of lipoproteins from LolA to LolB. Strong inner membrane retention of lipoproteins occurs with Asp at position 2 and a few limited residues at position 3. The inner membrane retention signal functions as a Lol avoidance signal and inhibits the recognition of lipoproteins by LolCDE, thereby causing their retention in the inner membrane. The positive charge of phosphatidylethanolamine and the negative charge of Asp at position 2 are essential for Lol avoidance. The Lol avoidance signal is speculated to cause the formation of a tight lipoprotein-phosphatidylethanolamine complex that has five acyl chains and therefore cannot be recognized by LolCDE.  相似文献   

15.
Escherichia coli lipoproteins are localized to either the inner or the outer membrane depending on the residue that is present next to the N-terminal acylated Cys. Asp at position 2 causes the retention of lipoproteins in the inner membrane. In contrast, the accompanying study (9) revealed that the residues at positions 3 and 4 determine the membrane specificity of lipoproteins in Pseudomonas aeruginosa. Since the five Lol proteins involved in the sorting of E. coli lipoproteins are conserved in P. aeruginosa, we examined whether or not the Lol proteins of P. aeruginosa are also involved in lipoprotein sorting but utilize different signals. The genes encoding LolCDE, LolA, and LolB homologues were cloned and expressed. The LolCDE homologue thus purified was reconstituted into proteoliposomes with lipoproteins. When incubated in the presence of ATP and a LolA homologue, the reconstituted LolCDE homologue released lipoproteins, leading to the formation of a LolA-lipoprotein complex. Lipoproteins were then incorporated into the outer membrane depending on a LolB homologue. As revealed in vivo, lipoproteins with Lys and Ser at positions 3 and 4, respectively, remained in proteoliposomes. On the other hand, E. coli LolCDE released lipoproteins with this signal and transferred them to LolA of not only E. coli but also P. aeruginosa. These results indicate that Lol proteins are responsible for the sorting of lipoproteins to the outer membrane of P. aeruginosa, as in the case of E. coli, but respond differently to inner membrane retention signals.  相似文献   

16.
Bacterial lipoproteins are peripherally anchored membrane proteins that play a variety of roles in bacterial physiology and virulence in monoderm (single membrane-enveloped, e.g., gram-positive) and diderm (double membrane-enveloped, e.g., gram-negative) bacteria. After export of prolipoproteins through the cytoplasmic membrane, which occurs predominantly but not exclusively via the general secretory or Sec pathway, the proteins are lipid-modified at the cytoplasmic membrane in a multistep process that involves sequential modification of a cysteine residue and cleavage of the signal peptide by the signal II peptidase Lsp. In both monoderms and diderms, signal peptide processing is preceded by acylation with a diacylglycerol through preprolipoprotein diacylglycerol transferase (Lgt). In diderms but also some monoderms, lipoproteins are further modified with a third acyl chain through lipoprotein N-acyl transferase (Lnt). Fully modified lipoproteins that are destined to be anchored in the inner leaflet of the outer membrane (OM) are selected, transported and inserted by the Lol (lipoprotein outer membrane localization) pathway machinery, which consists of the inner-membrane (IM) ABC transporter-like LolCDE complex, the periplasmic LolA chaperone and the OM LolB lipoprotein receptor. Retention of lipoproteins in the cytoplasmic membrane results from Lol avoidance signals that were originally described as the “+ 2 rule”. Surface localization of lipoproteins in diderms is rare in most bacteria, with the exception of several spirochetal species. Type 2 (T2SS) and type 5 (T5SS) secretion systems are involved in secretion of specific surface lipoproteins of γ-proteobacteria. In the model spirochete Borrelia burgdorferi, surface lipoprotein secretion does not follow established sorting rules, but remains dependent on N-terminal peptide sequences. Secretion through the outer membrane requires maintenance of lipoproteins in a translocation-competent unfolded conformation, likely through interaction with a periplasmic holding chaperone, which delivers the proteins to an outer membrane lipoprotein flippase. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.  相似文献   

17.
The LolCDE complex of Escherichia coli releases outer membrane-specific lipoproteins from the inner membrane. Lipoproteins with Asp at + 2 remain in the inner membrane since this residue functions as a LolCDE avoidance signal depending on phosphatidylethanolamine. We examined the effects of other phospholipids on lipoprotein sorting in proteoliposomes reconstituted with LolCDE and various synthetic phospholipids. The lipoprotein release and ATP hydrolysis were both low at 2 mM Mg2+ but very high at 10 mM Mg2+ in proteoliposomes containing cardiolipin alone. However, the Lol avoidance function was abolished at 10 mM Mg2+, and the release of lipoproteins with Asp at + 2 was as efficient as that of outer membrane-specific lipoproteins. The addition of phosphatidylethanolamine to cardiolipin stimulated the ATP hydrolysis and increased the Lol avoidance function of Asp at + 2 at 2 mM Mg2+. The addition of phosphatidylglycerol to cardiolipin nearly completely inhibited the release of lipoproteins with Asp at + 2 even at 10 mM Mg2+, while that of outer membrane-specific lipoproteins was not. Taken together, these results indicate that three major phospholipids of E. coli differently affect lipoprotein sorting and the activity of LolCDE.  相似文献   

18.
The outer membrane of gram-negative bacteria is an asymmetric lipid bilayer with phospholipids and lipopolysaccharides (LPSs). β-Barreled outer membrane proteins and lipoproteins are embedded in the outer membrane. All of these constituents are essential to the function of the outer membrane. The transport systems for lipoproteins have been characterized in detail. An ATP-binding cassette (ABC) transporter, LolCDE, initiates sorting by mediating the detachment of lipoproteins from the inner membrane to form a water-soluble lipoprotein-LolA complex in the periplasm. Lipoproteins are then transferred to LolB at the outer membrane and are incorporated into the lipid bilayer. A model analogous to the Lol system has been suggested for the transport of LPS, where an ABC transporter, LptBFG, mediates the detachment of LPS from the inner membrane. Recent developments in the functional characterization of ABC transporters involved in the biogenesis of the outer membrane in gram-negative bacteria are discussed.  相似文献   

19.
Bacterial lipoproteins represent a subset of membrane-associated proteins that are covalently modified with lipids at the N-terminal cysteine. The final step of lipoprotein modification, N-acylation of apolipoproteins, is mediated by apolipoprotein N-acyltransferase (Lnt). Examinations with reconstituted proteoliposomes and a conditional mutant previously indicated that N-acylation of lipoproteins is required for their efficient release from the inner membrane catalyzed by LolA and LolCDE, the lipoprotein-specific chaperone and ABC transporter, respectively. Because Lnt is essential for Escherichia coli, a mutant lacking Lnt activity has not been isolated. However, we report here that lnt-null strains can be constructed when LolCDE is overproduced in strains lacking either the major outer membrane lipoprotein Lpp or transpeptidases that cross-link Lpp with peptidoglycan. Lipoproteins purified from the lnt-null strain exhibited increased mobility on SDS-PAGE compared to those from wild-type cells and could be sequenced by Edman degradation, indicating that lipoproteins in this mutant exist as apolipoproteins that lack N-acylation. Overexpression of Lpp in the lnt-null strain resulted in the accumulation of apoLpp in the inner membrane and caused growth arrest. In contrast to the release of mature Lpp in the presence of LolA and LolCDE, that of apoLpp from the inner membrane was significantly retarded. Furthermore, the amount of lipoproteins copurified with LolCDE was significantly reduced in the lnt-null strain. These results indicate that the affinity of LolCDE for apolipoprotein is very low, and therefore, overexpression of LolCDE is required for its release and sorting to the outer membrane.  相似文献   

20.
【目的】副溶血性弧菌是一种重要的人畜共患病原菌,脂蛋白定位系统(Localization of lipoprotein system,Lol)负责该菌脂蛋白的转运与定位,与其致病力及耐药性密切相关,对Lol系统转运蛋白进行系统的生物信息学分析,有助于推动副溶血性弧菌致病与耐药机理的进一步研究。【方法】本文通过生物信息学分析技术,结合ExPASy在线工具、SignalP 4.0 Server、TMHMM-2.0、STRING、SWISS-MODEL等软件,分析了副溶血性弧菌Lol系统转运蛋白LolA-E及LolCD_2E的基本性质、蛋白互作关系及三级结构。【结果】LolA和LolB为酸性亲水蛋白,含信号肽位点,无跨膜区域。LolC和LolE为碱性疏水膜蛋白,LolCD_2E为中性疏水膜蛋白,LolC-E及LolCD_2E均无显著的信号肽位点。蛋白相互作用网络显示,LolA–E五个蛋白的编码基因均共表达,负责脂蛋白的合成与转运,并与BamA、Pal、MacB、CmeC等外膜蛋白具有密切的互作关系。三级结构同源建模发现,副溶血性弧菌与大肠杆菌拥有相似的LolA和LolB结构,LolC-E含有MacB蛋白的同源结构,赋予了该系统消耗ATP运输脂蛋白的重要功能。此外,本研究还首次发现了副溶血性弧菌LolC和LolE中存在一段保守的Hook结构,是LolCD_2E复合物与LolA结合并转运脂蛋白的关键区域。【结论】本研究为副溶血性弧菌Lol系统转运蛋白的表达纯化、结构与功能的研究提供了重要的数据基础,为后续抗菌药物的研发提供了新型作用靶点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号