共查询到20条相似文献,搜索用时 0 毫秒
1.
Heparan sulfate and chondroitin sulfate proteoglycans inhibit E-selectin binding to endothelial cells 总被引:3,自引:0,他引:3
E-selectin is a cell adhesion molecule involved in the initial rolling and adhesion of leukocytes to the endothelium during inflammation. In addition, in vitro studies have suggested that an interaction between E-selectin and binding sites such as sialyl Lewis X-containing oligosaccharides on endothelial cells may be important for angiogenesis. In order to investigate the binding of E-selectin to endothelial cells, we developed an ELISA assay using chimeric E-selectin-Ig molecules and endothelial cells fixed on poly-L-lysine coated plates. Our results indicate that E-selectin-Ig binds to both bovine capillary endothelial cells and human dermal microvascular endothelial cells in a calcium-dependent and saturable manner. The binding is inhibited markedly by heparin and by syndecan-1 ectodomain, and moderately by chondroitin sulfate, but not by sialyl Lewis X-containing oligosaccharides. These results suggest that heparan sulfate and chondroitin sulfate proteoglycans on endothelial cells are potential ligands for E-selectin. 相似文献
2.
Garud DR Tran VM Victor XV Koketsu M Kuberan B 《The Journal of biological chemistry》2008,283(43):28881-28887
Proteoglycans (PGs) are composed of a protein moiety and a complex glycosaminoglycan (GAG) polysaccharide moiety. GAG chains are responsible for various biological activities. GAG chains are covalently attached to serine residues of the core protein. The first step in PG biosynthesis is xylosylation of certain serine residues of the core protein. A specific linker tetrasaccharide is then assembled and serves as an acceptor for elongation of GAG chains. If the production of endogenous GAG chains is selectively inhibited, one could determine the role of these endogenous molecules in physiological and developmental functions in a spatiotemporal manner. Biosynthesis of PGs is often blocked with the aid of nonspecific agents such as chlorate, a bleaching agent, and brefeldin A, a fungal metabolite, to elucidate the biological roles of GAG chains. Unfortunately, these agents are highly lethal to model organisms. Xylosides are known to prime GAG chains. Therefore, we hypothesized that modified xylose analogs may able to inhibit the biosynthesis of PGs. To test this, we synthesized a library of novel 4-deoxy-4-fluoroxylosides with various aglycones using click chemistry and examined each for its ability to inhibit heparan sulfate and chondroitin sulfate using Chinese hamster ovary cells as a model cellular system. 相似文献
3.
Fibroblasts from cornea, heart, and skin of day 14 embryonic chicks demonstrate the ability to make heparan sulfate-like polysaccharide when examined during the 10 hr period immediately following their removal from the embryo. Both the whole tissues from which these fibroblasts are isolated and the fibroblasts grown for 2–5 weeks in vitro also synthesize heparan sulfate. During their first few days in vitro, the three fibroblast populations display increasing rates of [35S]-sulfate and d-[1-3H]-Glucosamine incorporation into glycosaminoglycans and sharp fluctuations of those rates, yet the percentage of total [35S]-sulfate incorporated into heparan sulfate-like polysaccharide and the distribution of this polysaccharide between cells and nutrient medium do not change significantly. During their first 48 hr in vitro, skin fibroblasts, but not those from cornea or heart, show steadily decreasing discrepancies between the proportions of [35S]-sulfate and d-[1-3H]-Glucosamine incorporated into heparan sulfate, suggesting a sharp decline in the synthesis of nonsulfated glycosaminoglycans. These data support the hypothesis of Kraemer than many cell-types in vivo may normally make heparan sulfate. The data largely eliminate the hypothesis that the biosynthesis of this polysaccharide is selectively stimulated as embryonic cells adapt to growth in vitro. 相似文献
4.
Yada T Gotoh M Sato T Shionyu M Go M Kaseyama H Iwasaki H Kikuchi N Kwon YD Togayachi A Kudo T Watanabe H Narimatsu H Kimata K 《The Journal of biological chemistry》2003,278(32):30235-30247
5.
Izumikawa T Koike T Shiozawa S Sugahara K Tamura J Kitagawa H 《The Journal of biological chemistry》2008,283(17):11396-11406
Recently, we demonstrated that chondroitin polymerization is achieved by any two combinations of human chondroitin synthase-1 (ChSy-1), ChSy-2 (chondroitin sulfate synthase 3, CSS3), and chondroitin-polymerizing factor (ChPF). Although an additional ChSy family member, called chondroitin sulfate glucuronyltransferase (CSGlcA-T), has been identified, its involvement in chondroitin polymerization remains unclear because it possesses only glucuronyltransferase II activity responsible for the elongation of chondroitin sulfate (CS) chains. Herein, we report that CSGlcA-T exhibits polymerization activity on alpha-thrombomodulin bearing the truncated linkage region tetrasaccharide through its interaction with ChSy-1, ChSy-2 (CSS3), or ChPF, and the chain length of chondroitin formed by the co-expressed proteins in various combinations is different. In addition, ChSy family members co-expressed in various combinations exhibited distinct but overlapping acceptor substrate specificities toward the two synthetic acceptor substrates, GlcUAbeta1-3Galbeta1-O-naphthalenemethanol and GlcUAbeta1-3Galbeta1-O-C(2)H(4)NH-benzyloxycarbonyl, both of which share the disaccharide sequence with the glycosaminoglycan-protein linkage region tetrasaccharide. Moreover, overexpression of CSGlcA-T increased the amount of CS in HeLa cells, whereas the RNA interference of CSGlcA-T resulted in a reduction of the amount of CS in the cells. Furthermore, the analysis using the CSGlcA-T mutant that lacks any glycosyltransferase activity but interacts with other ChSy family members showed that the glycosyltransferase activity of CSGlcA-T plays an important role in chondroitin polymerization. Overall, these results suggest that chondroitin polymerization is achieved by multiple combinations of ChSy-1, ChSy-2, CSGlcA-T, and ChPF and that each combination may play a unique role in the biosynthesis of CS. Based on these results, we renamed CSGlcA-T chondroitin synthase-3 (ChSy-3). 相似文献
6.
Gotoh M Yada T Sato T Akashima T Iwasaki H Mochizuki H Inaba N Togayachi A Kudo T Watanabe H Kimata K Narimatsu H 《The Journal of biological chemistry》2002,277(41):38179-38188
7.
We characterized the recombinant glucuronyltransferase I (GlcAT-I) involved in the glycosaminoglycan-protein linkage region biosynthesis. The enzyme showed strict specificity for Galbeta1-3Galbeta1-4Xyl, exhibiting negligible incorporation into other galactoside substrates including Galbeta1-3Galbeta1-O-benzyl, Galbeta1-4GlcNAc and Galbeta1-4Glc. A comparison of the GlcAT-I with another beta1,3-glucuronyltransferase involved in the HNK-1 epitope biosynthesis revealed that the two beta1,3-glucuronyltransferases exhibited distinct and no overlapping acceptor substrate specificities in vitro. Nevertheless, the transfection of the GlcAT-I cDNA into COS-1 cells induced the significant expression of the HNK-1 epitope. These results suggested that the high expression of the GlcAT-I gene rendered the cells capable of synthesizing the HNK-1 epitope. 相似文献
8.
Production of chondroitin sulfate and chondroitin 总被引:2,自引:0,他引:2
Chiara Schiraldi Donatella Cimini Mario De Rosa 《Applied microbiology and biotechnology》2010,87(4):1209-1220
The production of microbial polysaccharides has recently gained much interest because of their potential biotechnological
applications. Several pathogenic bacteria are known to produce capsular polysaccharides, which provide a protection barrier
towards harsh environmental conditions, and towards host defences in case of invasive infections. These capsules are often
composed of glycosaminoglycan-like polymers. Glycosaminoglycans are essential structural components of the mammalian extracellular
matrix and they have several applications in the medical, veterinary, pharmaceutical and cosmetic field because of their peculiar
properties. Most of the commercially available glycosaminoglycans have so far been extracted from animal sources, and therefore
the structural similarity of microbial capsular polysaccharides to these biomolecules makes these bacteria ideal candidates
as non-animal sources of glycosaminoglycan-derived products. One example is hyaluronic acid which was formerly extracted from
hen crests, but is nowadays produced via Streptococci fermentations. On the other hand, no large scale biotechnological production
processes for heparin and chondrotin sulfate have been developed. The larger demand of these biopolymers compared to hyaluronic
acid (tons vs kilograms), due to the higher titre in the final product (grams vs milligrams/dose), and the scarce scientific
effort have hampered the successful development of fermentative processes. In this paper we present an overview of the diverse
applications and production methods of chondroitin reported so far in literature with a specific focus on novel microbial
biotechnological approaches. 相似文献
9.
10.
Two N-acetylgalactosaminyltransferase are involved in the biosynthesis of chondroitin sulfate 总被引:1,自引:0,他引:1
Two N-acetylgalactosaminyltransferases, designated I and II, have been purified from the microsomal fraction of calf arterial tissue and separated on Bio-Gel A. N-Acetylgalactosaminyltransferase I was purified 450-fold. It requires Mn2+ for maximal activity and transfers N-acetylgalactosamine residues from UDP-[1-3H]GalNAc in beta-glycosidic configuration to the non-reducing terminus of the acceptor substrates GlcA(beta 1-3)Gal(beta 1-3)Gal, GlcA(beta 1-3)Gal(beta 1-4)Glc and GlcA(beta 1-3)Gal. Even-numbered chondroitin oligosaccharides serve as acceptors for N-acetylgalactosaminyltransferase II, which transfers N-acetylgalactosamine from UDP-[1-3H]GalNAc to the non-reducing glucuronic acid residues of oligosaccharide acceptor substrates. Maximum transfer rates were obtained with a decasaccharide derived from chondroitin. Longer or shorter-chain chondroitin oligosaccharides are less effective acceptor substrates. All reaction products formed by N-acetylgalactosaminyltransferases I and II are substrates of beta-N-acetylhexosaminidase, which splits off the transferred [1-3H]GalNAc completely. In the microsomal fraction N-acetylgalactosaminyltransferase II had a 300-fold higher specific activity than N-acetylgalactosaminyltransferase I. In contrast to enzyme I, enzyme II loses much of its activity during the purification procedure and undergoes rapid thermodenaturation. GlcA-Gal-Gal is a characteristic sequence of the carbohydrate-protein linkage region of proteochondrioitin sulfate. The acceptor capacity of this trisaccharide suggests that N-acetylgalactosaminyltransferase I is involved in the synthesis of the carbohydrate-protein linkage region. Since N-acetylgalactosaminyltransferase II is highly specific for chondroitin oligosaccharides, we conclude that it participates in chain elongation during chondroitin sulfate synthesis. 相似文献
11.
Inhibition of chondroitin and heparan sulfate biosynthesis in Chinese hamster ovary cell mutants defective in galactosyltransferase I 总被引:24,自引:0,他引:24
J D Esko J L Weinke W H Taylor G Ekborg L Rodén G Anantharamaiah A Gawish 《The Journal of biological chemistry》1987,262(25):12189-12195
We have isolated five Chinese hamster ovary cell mutants defective in galactosyltransferase I (UDP-D-galactose:xylose beta-1,4-D-galactosyltransferase) and studied the effect of p-nitrophenyl-beta-D-xyloside supplementation on glycosaminoglycan biosynthesis in the mutant cells. Assays of galactosyltransferase I showed that the mutants contained less than 2% of the enzyme activity present in wild-type cells, and enzyme activity was additive in mixtures of mutant and wild-type cell extracts, suggesting that the mutations most likely defined the structural gene encoding the enzyme. Cell hybridization studies showed that the mutations in all five strains were recessive and that the mutants belonged to the same complementation group. The mutants contained wild-type levels of xylosyltransferase (UDP-D-xylose:core protein (serine) beta-D-xylosyltransferase), lactose synthase (UDP-D-galactose:N-acetyl-glucosaminide beta-1,4-D-galactosyltransferase), and lactosylceramide synthase (UDP-D-galactose:glucosylceramide beta-1,4-D-galactosyltransferase). Their sensitivity to lectin-mediated cytotoxicity was virtually identical to that of the wild-type, indicating that there were no gross alterations in glycoprotein or glycolipid compositions. Anion-exchange high performance liquid chromatography of 35S-glycosaminoglycans from one of the galactosyltransferase I-deficient mutants showed a dramatic reduction in both heparan sulfate and chondroitin sulfate, demonstrating that galactosyltransferase I is responsible for the formation of both glycosaminoglycans in intact cells. Surprisingly, the addition of 1 mM-p-nitrophenyl-beta-D-xyloside, a substrate for galactosyltransferase I, restored glycosaminoglycan synthesis in mutant cells. This finding suggested that another galactosyltransferase, possibly lactose synthase, can transfer galactose to xylose in intact cells. 相似文献
12.
Simone M-L Smith Leigh A West Prasanthi Govindraj Xiuqin Zhang David M Ornitz John R Hassell 《Matrix biology》2007,26(3):175-184
Fibroblast growth factor (FGF)-2 regulates chondrocyte proliferation in the growth plate. Heparan sulfate (HS) proteoglycans bind FGF-2. Perlecan, a heparan sulfate proteoglycan (HSPG) in the developing growth plate, however, contains both HS and chondroitin sulfate (CS) chains. The binding of FGF-2 to perlecan isolated from the growth plate was evaluated using cationic filtration (CAF) and immunoprecipitation (IP) assays. FGF-2 bound to perlecan in both the CAF and IP assays primarily via the HS chains on perlecan. A maximum of 123 molecules of FGF-2 was calculated to bind per molecule of perlecan. When digested with chondroitinase ABC to remove its CS chains, perlecan augmented binding of FGF-2 to the FGFR-1 and FGFR-3 receptors and also increased FGF-2 stimulation of [(3)H]-thymidine incorporation in BaF3 cells expressing these FGF receptors. These data show that growth plate perlecan binds to FGF-2 by its HS chains but can only deliver FGF-2 to FGF receptors when its CS chains are removed. 相似文献
13.
Chondroitin sulfate and dermatan sulfate are synthesized as galactosaminoglycan polymers containing N-acetylgalactosmine alternating with glucuronic acid. The sugar residues are sulfated to varying degrees and positions depending upon the tissue sources and varying conditions of formation. Epimerization of any of the glucuronic acid residues to iduronic acid at the polymer level constitutes the formation of dermatan sulfate. Chondroitin/dermatan glycosaminoglycans are covalently attached by a common tetrasaccharide sequence to the serine residues of core proteins while they are adherent to the inner surface of endoplasmic reticulum/Golgi vesicles. Addition of the first sugar residue, xylose, to core proteins begins in the endoplasmic reticulum, followed by the addition of two galactose residues by two distinct glycosyl transferases in the early cis/medial regions of the Golgi. The linkage tetrasaccharide is completed in the medial/trans Golgi by the addition of the first glucuronic acid residue, followed by transfer of N-acetylgalactosamine to initiate the formation of a galactosaminoglycan rather than a glucosaminoglycan. This specific N-acetylgalactosaminyl transferase is different from the chondroitin synthase involved in generation of the repeating disaccharide units to form the chondroitin polymer. Sulfation of the chondroitin polymer by specific sulfotransferases occurs as the polymer is being formed. All the enzymes in the pathway for synthesis have been cloned, with the exception of the glucuronyl to iduronyl epimerase involved in the formation of dermatan residues. 相似文献
14.
Heparan sulfate biosynthesis: a theoretical study of the initial sulfation step by N-deacetylase/N-sulfotransferase
下载免费PDF全文
![点击此处可从《Biophysical journal》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Gorokhov A Perera L Darden TA Negishi M Pedersen LC Pedersen LG 《Biophysical journal》2000,79(6):2909-2917
Heparan sulfate N-deacetylase/N-sulfotransferase (NDST) catalyzes the deacetylation and sulfation of N-acetyl-D-glucosamine residues of heparan sulfate, a key step in its biosynthesis. Recent crystallographic and mutational studies have identified several potentially catalytic residues of the sulfotransferase domain of this enzyme (, J. Biol. Chem. 274:10673-10676). We have used the x-ray crystal structure of heparan sulfate N-sulfotransferase with 3'-phosphoadenosine 5'-phosphate to build a solution model with cofactor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) and a model heparan sulfate ligand bound, and subsequently performed a 2-ns dynamics solution simulation. The simulation results confirm the importance of residues Glu(642), Lys(614), and Lys(833), with the possible involvement of Thr(617) and Thr(618), in binding PAPS. Additionally, Lys(676) is found in close proximity to the reaction site in our solvated structure. This study illustrates for the first time the possible involvement of water in the catalysis. Three water molecules were found in the binding site, where they are coordinated to PAPS, heparan sulfate, and the catalytic residues. 相似文献
15.
Ryu-Ichiro Hata Shin-Ichiro Ohkawa Yutaka Nagai 《Biochimica et Biophysica Acta (BBA)/General Subjects》1978,543(2):156-166
Blood and urinary low-sulfated chondroitin sulfate from healthy young and aged volunteers have been characterized by gel chromatography, two-dimensional electrophoresis on cellulose acetate strips and by chemical and enzymatic analysis. No difference in content of the material (24 nmol hexosamine per ml plasma) was observed regardless of age. Chemical composition (approximately 40% sulfation at 4-position of galactosamine) and molecular weight (about 8000) of blood and urinary low-sulfated chondroitin sulfates were found to be the same, though urinary excretion of the material was much higher in the aged than in the young adults (Ohkawa et al. (1972) J. Biochem. 72, 1495–1501). Low-sulfated chondroitin sulfate in serum was in a bound form with a molecular weight of more than 100000, irrespective of age. These results suggest that increase in urinary excretion of low-sulfated chondroitin sulfate in the aged is mainly due to renal dysfunction.Low-sulfated chondroitin sulfate was also the main component of acidic glycosaminoglycans in blood from patients with Hurler's syndrome who excreted excessive amounts of dermatan sulfate and heparan sulfate in urine. This suggests that low-sulfated chondroitin sulfate in blood is not merely a precursor of urinary glycosaminoglycans in the case of healthy young adults. 相似文献
16.
Chondroitin sulfate (Structum) interacts with human leukocyte elastase, a potent mediator of articular cartilage degradation, producing a partial inhibition of the enzyme activity (60% at saturation). Kinetically, the inhibition mechanism can be classified as simple intersecting, hyperbolic noncompetitive and is almost identical to that found earlier for similar compounds. The best inhibitory activity of chondroitin sulfate was found in fractions having at the same time a high proportion of chondroitin-6-sulfate relative to the corresponding 4-isomer and a high molecular mass. Thus, a fraction with high Mr and containing 92% of isomer 6 inhibited leukocyte elastase with Ki = 1.8 micrograms/ml, whereas a fraction with low Mr and almost equal composition of the 4- and 6-isomer had Ki = 140 micrograms/ml. Ki for unfractionated chondroitin sulfate was 3.4 micrograms/ml. It is suggested, that the modulation of the extracellular activity of cartilage-degrading enzymes by cartilage-derived factors may explain, at least in part, the beneficial effects of some therapeutically used chondroprotective agents. 相似文献
17.
18.
N B Schwartz 《The Journal of biological chemistry》1977,252(18):6316-6321
Monolayer cultures of embryonic chick chondrocytes were incubated with 35SO42- in the presence and absence of 1.0 mM p-nitrophenyl-beta-d-xyloside for 2 days. The relative amounts of chondroitin sulfate proteoglycan and free polysaccharide chains were measured following gel filtration on Sephadex G-200. Synthesis of beta-xyloside-initiated polysaccharide chains was accompanied by an apparent decrease in chondroitin sulfate proteoglycan production by the treated cultures. When levels of cartilage-specific core protein were determined by a radioimmunoassay, similar amounts of core protein were found in both beta-xyloside and control cultures, indicating that decreased synthesis of core protein is not responsible for the observed decrease in chondroitin sulfate proteoglycan production. Activity levels of the chain-initiating glycosyltransferases (UDP-D-xylose: core protein xylosyltransferase and UDP-D-galactose:D-xylose galactosyltransferase) as well as the extent of xylosylation of core protein were found to be similar in cell extracts from both culture types. Furthermore, beta-xylosides did not inhibit the xylosyltransferase reaction in cell-free studies. In contrast, the beta-xylosides effectively competed with several galactose acceptors, including an enzymatically synthesized xylosylated core protein acceptor, in the first galactosyltransferase reaction. 相似文献
19.
Sørensen HP Vivès RR Manetopoulos C Albrechtsen R Lydolph MC Jacobsen J Couchman JR Wewer UM 《The Journal of biological chemistry》2008,283(46):31920-31932
The disintegrin and metalloproteases (ADAMs) are emerging as therapeutic targets in human disease, but specific drug design is hampered by potential redundancy. Unlike other metzincins, ADAM prodomains remain bound to the mature enzyme to regulate activity. Here ADAM12, a protease that promotes tumor progression and chondrocyte proliferation in osteoarthritic cartilage, is shown to possess a prodomain/catalytic domain cationic molecular switch, regulated by exogenous heparan sulfate and heparin but also endogenous cell surface proteoglycans and the polyanion, calcium pentosan polysulfate. Sheddase functions of ADAM12 are regulated by the switch, as are proteolytic functions in placental tissue and sera of pregnant women. Moreover, human heparanase, an enzyme also linked to tumorigenesis, can promote ADAM12 sheddase activity at the cell surface through cleavage of the inhibitory heparan sulfate. These data present a novel concept that might allow targeting of ADAM12 and suggest that other ADAMs may have specific regulatory activity embedded in their prodomain and catalytic domain structures. 相似文献
20.
L P van den Heuvel J H Veerkamp L A Monnens C H Schr?der 《The International journal of biochemistry》1988,20(12):1391-1400
1. Proteoglycans were isolated from human and equine glomeruli or tubules by guanidine extraction and anion exchange chromatography. 2. These proteoglycan preparations contained about equal amounts of heparan sulfate and chondroitin sulfates. 3. During the preparation of glomerular or tubular basement membranes the main part of proteoglycans (greater than 50%) was extracted in the salt extract. Chondroitin sulfate proteoglycan was mainly found in the water and salt extracts of glomeruli and tubules, heparan sulfate proteoglycan in the deoxycholate extracts and the basement membranes. 4. The glomerular basement membrane (GBM) contains about 12% (human) or 20% (equine) of the proteoglycans of the total glomerulus. They consist of greater than 70% (equine) or 80% (human) of heparan sulfate. 5. Heparan sulfate proteoglycan was isolated from the proteoglycan preparations of human or equine glomeruli and tubules by additional treatment with nucleases and chondroitinase ABC followed by CsCl gradient centrifugation. 6. Protein accounts for about 40% (dry weight) of the heparan sulfate proteoglycans. Their amino acid composition is characterized by a high content of glycine, but 3-hydroxyproline, 4-hydroxyproline and hydroxylysine are lacking. 7. The biochemical characteristics of the heparan sulfate proteoglycan of human or equine glomeruli or tubules differ from that isolated from rat glomeruli by their higher protein content and their amino acid composition. The significance of these differences is discussed. 相似文献