首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural effects of cadmium on cell membranes were studied through the interaction of Cd(2+) ions with human erythrocytes and their isolated unsealed membranes (IUM). Studies were carried out by scanning electron microscopy and fluorescence spectroscopy, respectively. Cd(2+) induced shape changes in erythrocytes, which took the form of echinocytes. According to the bilayer couple hypothesis, this result meant that Cd(2+) ions located in the outer monolayer of the erythrocyte membrane. Fluorescence spectroscopy measurements in IUM indicated a disordering effect at both the polar headgroup and the acyl chain packing arrangements of the membrane phospholipid bilayer. Cd(2+) ions also interacted with molecular models of the erythrocyte membrane consisting in bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representing classes of phospholipids located in the outer and inner monolayers the erythrocyte membrane, respectively. X-ray diffraction indicated that Cd(2+) ions induced structural perturbation of the polar headgroup and of the hydrophobic acyl regions of DMPC, while the effects of cadmium on DMPE bilayers were much milder. This conclusion is supported by fluorescence spectroscopy measurements on DMPC large unilamellar vesicles (LUV). All these findings point to the important role of phospholipid bilayers in the interaction of cadmium on cell membranes.  相似文献   

2.
Norephedrine, also called phenylpropanolamine (PPA), is a synthetic form of the ephedrine alkaloid. After reports of the occurrence of intracranial hemorrhage and other adverse effects, including several deaths, PPA is no longer sold in USA and Canada. Despite the extensive information about PPA toxicity, reports on its effects on cell membranes are scarce. With the aim to better understand the molecular mechanisms of the interaction of PPA with cell membranes, ranges of concentrations were incubated with intact human erythrocytes, isolated unsealed human erythrocyte membranes (IUM), and molecular models of cell membranes. The latter consisted in bilayers built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), phospholipid classes present in the outer and inner monolayers of most plasmatic cell membranes, respectively. The capacity of PPA to perturb the bilayer structures of DMPC and DMPE was assessed by X-ray diffraction, DMPC large unilamellar vesicles (LUV) and IUM were studied by fluorescence spectroscopy, and intact human erythrocytes were observed by scanning electron microscopy (SEM). This study presents evidence that PPA affects human red cell membranes as follows: (a) in SEM studies on human erythrocytes it was observed that 0.5 mM PPA induced shape changes; (b) in IUM PPA induced a sharp decrease in the fluorescence anisotropy in the lipid bilayer acyl chains in a concentration range lower than 100 μM; (c) X-ray diffraction studies showed that PPA in the 0.1–0.5 mM range induced increasing structural perturbation to DMPC, but no effects on DMPE multibilayers were detected.  相似文献   

3.
W C Wimley  T E Thompson 《Biochemistry》1991,30(6):1702-1709
The rates of spontaneous interbilayer and transbilayer exchange of [3H]dimyristoylphosphatidylcholine ([3H]DMPC) were examined in DMPC and DMPC/dimyristoylphosphatidylethanolamine (DMPE) large unilamellar vesicles in the liquid-crystalline-, gel-, and mixed-phase states. DMPC desorption rates from either gel or liquid-crystalline phases containing DMPE are very similar to the corresponding rates from pure DMPC gel or liquid-crystalline phases. This is not the case for DMPC desorption from distearoylphosphatidylcholine (DSPC)-containing gel phases, where the desorption rates are significantly faster than from a pure DMPC gel phase [Wimley, W. C., & Thompson, T. E. (1990) Biochemistry 29, 1296-1303]. We proposed that the DMPC/DSPC behavior results from packing defects in gel phases composed of both DMPC and DSPC molecules because of the four-carbon difference in the acyl chain lengths of the two species. The present results strongly support this hypothesis because no such anomalous behavior is observed in DMPC/DMPE, which is similar to DMPC/DSPC in phase behavior but does not have the chain length difference. The inclusion of 10-30 mol % DMPE in DMPC bilayers was also found to have a significant effect on the rate of transbilayer movement (flip-flop) of [3H]DMPC in the liquid-crystalline phase. Between 10 and 30 mol % DMPE, flip-flop of DMPC is slowed by at least 10-fold relative to flip-flop in DMPC bilayers, and the entropy and enthalpy of flip-flop activation are both substantially decreased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The mechanism whereby lithium carbonate controls manic episodes and possibly influences affective disorders is not yet known. There is evidence, however, that lithium alters sodium transport and may interfere with ion exchange mechanisms and nerve conduction. For these reasons it was thought of interest to study its perturbing effects upon membrane structures. The effects of lithium carbonate (Li+) on the human erythrocyte membrane and molecular models have been investigated. The molecular models consisted in bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representing classes of phospholipids located in the outer and inner monolayers of the erythrocyte membrane, respectively. This report presents the following evidence that Li+ interacts with cell membranes: a) X-ray diffraction indicated that Li+ induced structural perturbation of the polar head group and of the hydrophobic acyl regions of DMPC and DMPE; b) experiments performed on DMPC large unilamellar vesicles (LUV) by fluorescence spectroscopy also showed that Li+ interacted with the lipid polar groups and hydrophobic acyl chains, and c) in scanning electron microscopy (SEM) studies on intact human erythrocytes the formation of echinocytes was observed, effect that might be due to the insertion of Li+ in the outer monolayer of the red cell membrane.  相似文献   

5.
Effects of lead on the human erythrocyte membrane and molecular models   总被引:1,自引:0,他引:1  
Lead has no biological function; however, low, and particularly, high levels of exposure have a number of negative consequences for human health. Despite the number of reports about lead toxicity, very little information has been obtained regarding its effects on cell membranes. For this reason, the structural effects of lead on the human erythrocyte membranes were investigated. This aim was attained by making lead ions interact with intact erythrocytes, isolated unsealed erythrocyte membranes (IUM) and molecular models. The latter consisted of bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representing phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane. The results, obtained by electron microscopy, fluorescence spectroscopy and X-ray diffraction, indicated that (a) lead particles adhered to the external and internal surfaces of the human erythrocyte membrane; (b) lead ions disturbed the lamellar organization of IUM and DMPC large unilamellar vesicles (LUV) and (c) induced considerable molecular disorder in both lipid multilayers, the effects being much more pronounced in DMPC.  相似文献   

6.
Chromium exists in many oxidation states, of which only the hexavalent Cr(VI) and the trivalent Cr(III) ions are stable under environmental conditions. It is generally reported that Cr(VI) is highly toxic while Cr(III) is relatively innocuous, although others have reported just the opposite. On the other hand, despite the many studies on chromium toxicity, and particularly after the knowledge that Cr(VI) anions readily enter the erythrocytes where they are reduced to Cr(III), there are practically no reports on the structural effects induced by chromium compounds on the erythrocyte membrane. With the aim to better understand the molecular mechanisms of the interaction of Cr(III) and Cr(VI) with cell membranes, CrCl(3), and K(2)CrO(4) were incubated with intact erythrocytes, isolated unsealed human erythrocyte membranes (IUM), and molecular models of the erythrocyte membrane. These consisted in bilayers built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylcholine (DMPE), phospholipid classes present in the outer and inner monolayers of the erythrocyte membrane, respectively. The capacity of Cr(III) and Cr(VI) to perturb the bilayer structures of DMPC and DMPE was evaluated by X-ray diffraction, DMPC large unilamellar vesicles (LUV) and IUM were studied by fluorescence spectroscopy, and intact human erythrocytes were observed with scanning electron microscopy (SEM). In all these systems, it was found that Cr(III) induced considerably higher structural perturbations than Cr(VI).  相似文献   

7.
Kóta Z  Páli T  Marsh D 《Biophysical journal》2004,86(3):1521-1531
Gramicidin A was incorporated at a peptide/lipid ratio of 1:10 mol/mol in aligned bilayers of dimyristoyl phosphatidylcholine (DMPC), phosphatidylserine (DMPS), phosphatidylglycerol (DMPG), and phosphatidylethanolamine (DMPE), from trifluoroethanol. Orientations of the peptide and lipid chains were determined by polarized attenuated total reflection infrared spectroscopy. Lipid-peptide interactions with gramicidin A in DMPC bilayers were studied with different spin-labeled lipid species by using electron spin resonance spectroscopy. In DMPC membranes, the orientation of the lipid chains is comparable to that in the absence of peptide, in both gel and fluid phases. In gel-phase DMPC, the effective tilt of the peptide exceeds that of the lipid chains, but in the fluid phase both are similar. For gramicidin A in DMPS, DMPG, and DMPE, the degree of orientation of the peptide and lipid chains is less than in DMPC. In the fluid phase of DMPS, DMPG, and DMPE, gramicidin A is also less well oriented than are the lipid chains. In DMPE especially, gramicidin A is largely disordered. In DMPC membranes, three to four lipids per monomer experience direct motional restriction on interaction with gramicidin A. This is approximately half the number of lipids expected to contact the intramembranous perimeter of the gramicidin A monomer. A selectivity for certain negatively charged lipids is found in the interaction with gramicidin A in DMPC. These results are discussed in terms of the integration of gramicidin A channels in lipid bilayers, and of the interactions of lipids with integral membrane proteins.  相似文献   

8.
This study presents evidence that chlorpromazine (CPZ) affects human cells and cell membrane molecular models. Human SH-SY5Y neuroblastoma cells incubated with 0.1 mM CPZ suffered a decrease of cell viability. On the other hand, phase contrast microscopy observations of human erythrocytes indicated that they underwent a morphological alteration as 1 μM CPZ changed their discoid normal shape to stomatocytes, and to hemolysis with 1 mM CPZ. X-ray diffraction experiments performed on dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) bilayers, classes of the major phospholipids present in the outer and inner sides of the erythrocyte membrane, respectively showed that CPZ disordered the polar head and acyl chain regions of both DMPC and DMPE, where these interactions were stronger with DMPC bilayers. Fluorescence spectroscopy on DMPC LUV at 18 °C confirmed these results. In fact, the assays showed that CPZ induced a significant reduction of their generalized polarization (GP) and anisotropy (r) values, indicative of enhanced disorder at the polar head and acyl chain regions of the DMPC lipid bilayer.  相似文献   

9.
Methylation of inorganic arsenic has been regarded as a detoxification mechanism because its metabolites monomethylarsonic acid (MMA(v)) and dimethylarsinic acid (DMA(v)) are supposed to be less toxic than inorganic arsenite and arsenate. In recent years, however, this interpretation has been questioned. Additionally, there are insufficient reports concerning the effects of arsenic compounds on cell membrane structure and functions. With the aim to better understand the molecular mechanisms of the interaction of MMA(v) and arsenate with cell membranes, we have utilized molecular models consisting in bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of many cell membranes including that of the human erythrocyte. The capacity of MMA(v) and arsenate to perturb the bilayer structures of DMPC and DMPE was evaluated by X-ray diffraction; the modifications of their thermotropic behavior were followed by differential scanning calorimetry (DSC), while DMPC large unilamellar vesicles (LUV) were studied by fluorescence spectroscopy. It was found that MMA(v) and arsenate did not structurally perturb DMPC bilayers; however, DMPE bilayers did suffer structural perturbations by MMA(v). DSC measurements also revealed that DMPE's thermotropic properties were significantly affected by arsenicals, where MMA(v) was more effective than arsenate, whilst only slight modifications were observed in the case of DMPC-MMA(v) system.  相似文献   

10.
Plasmodium, the parasite which causes malaria in humans multiplies in the liver and then infects circulating erythrocytes. Thus, the role of the erythrocyte cell membrane in antimalarial drug activity and resistance has key importance. The effects of the antiplasmodial N(6)-(4-methoxybenzyl)quinazoline-2,4,6-triamine (M4), and its inclusion complex (M4/HPβCD) with 2-hydroxypropyl-β-cyclodextrin (HPβCD) on human erythrocytes and on cell membrane molecular models are herein reported. This work evidences that M4/HPβCD interacts with red cells as follows: a) in scanning electron microscopy (SEM) studies on human erythrocytes induced shape changes at a 10μM concentration; b) in isolated unsealed human erythrocyte membranes (IUM) a concentration as low as 1μM induced sharp DPH fluorescence anisotropy decrease whereas increasing concentrations produced a monotonically decrease of DPH fluorescence lifetime at 37°C; c) X-ray diffraction studies showed that 200μM induced a complete structural perturbation of dimyristoylphosphatidylcholine (DMPC) bilayers whereas no significant effects were detected in dimyristoylphosphatidylethanolamine (DMPE) bilayers, classes of lipids present in the outer and inner monolayers of the human erythrocyte membrane, respectively; d) fluorescence spectroscopy data showed that increasing concentrations of the complex interacted with the deep hydrophobic core of DMPC large unilamellar vesicles (LUV) at 18°C. All these experiments are consistent with the insertion of M4/HPβCD in the outer monolayer of the human erythrocyte membrane; thus, it can be considered a promising and novel antimalarial agent.  相似文献   

11.
We have studied the effects of the antimicrobial peptide gramicidin S (GS) on the thermotropic phase behavior of large multilamellar vesicles of dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylethanolamine (DMPE) and dimyristoyl phosphatidylglycerol (DMPG) by high-sensitivity differential scanning calorimetry. We find that the effect of GS on the lamellar gel to liquid-crystalline phase transition of these phospholipids varies markedly with the structure and charge of their polar headgroups. Specifically, the presence of even large quantities of GS has essentially no effect on the main phase transition of zwitterionic DMPE vesicles, even after repeating cycling through the phase transition, unless these vesicles are exposed to high temperatures, after which a small reduction in the temperature, enthalpy and cooperativity of the gel to liquid-crystalline phase transitions is observed. Similarly, even large amounts of GS produce similar modest decreases in the temperature, enthalpy and cooperativity of the main phase transition of DMPC vesicles, although the pretransition is abolished at low peptide concentrations. However, exposure to high temperatures is not required for these effects of GS on DMPC bilayers to be manifested. In contrast, GS has a much greater effect on the thermotropic phase behavior of anionic DMPG vesicles, substantially reducing the temperature, enthalpy and cooperativity of the main phase transition at higher peptide concentrations, and abolishing the pretransition at lower peptide concentrations as compared to DMPC. Moreover, the relatively larger effects of GS on the thermotropic phase behavior of DMPG vesicles are also manifest without cycling through the phase transition or exposure to high temperatures. Furthermore, the addition of GS to DMPG vesicles protects the phospholipid molecules from the chemical hydrolysis induced by their repeated exposure to high temperatures. These results indicate that GS interacts more strongly with anionic than with zwitterionic phospholipid bilayers, probably because of the more favorable net attractive electrostatic interactions between the positively charged peptide and the negatively charged polar headgroup in such systems. Moreover, at comparable reduced temperatures, GS appears to interact more strongly with zwitterionic DMPC than with zwitterionic DMPE bilayers, probably because of the more fluid character of the former system. In addition, the general effects of GS on the thermotropic phase behavior of zwitterionic and anionic phospholipids suggest that it is located at the polar/apolar interface of liquid-crystalline bilayers, where it interacts primarily with the polar headgroup and glycerol-backbone regions of the phospholipid molecules and only secondarily with the lipid hydrocarbon chains. Finally, the considerable lipid specificity of GS interactions with phospholipid bilayers may prove useful in the design of peptide analogs with stronger interactions with microbial as opposed to eucaryotic membrane lipids.  相似文献   

12.
This study was aimed at elucidating the molecular mechanisms of the interaction of the antitumor alkylphospholipid drug miltefosine with human erythrocytes (RBC) and molecular models of its membrane. The latter consisted of bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. X-ray results showed that the drug interacted with DMPC multilayers; however, no effects on DMPE were detected. The experimental findings obtained by differential scanning calorimetry (DSC) indicated that miltefosine altered the thermotropic behavior of both DMPC and DMPE vesicles. Fluorescence spectroscopy evidenced an increase in the fluidity of DMPC vesicles and human erythrocyte membranes. Scanning electron microscopy (SEM) observations on human erythrocytes showed that miltefosine induced morphological alterations to RBC from its normal biconcave to an echinocyte type of shape. These results confirm that miltefosine interacts with the outer moiety of the human erythrocyte membrane affecting the cell morphology.  相似文献   

13.
The structural effects of titanium citrate on the human erythrocyte membrane were studied through its interaction with intact erythrocytes and isolated unsealed human erythrocyte membranes (IUM). The studies were carried out by scanning electron microscopy and fluorescence spectroscopy, respectively. Titanium citrate induced shape changes in erythrocytes, which were damaged and ruptured leaving empty and retracted membranes. Fluorescence spectroscopy measurements in IUM indicated a disordering effect at both the polar head group and the acyl chain packing arrangements of the membrane phospholipid bilayer. Titanium citrate also interacted with molecular models of the erythrocyte membrane consisting in bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representing classes of phospholipids located in the outer and inner monolayers of the erythrocyte membrane, respectively. X-ray diffraction indicated that titanium citrate induced structural perturbation of the polar head group and of the hydrophobic acyl regions of DMPC, while the effects on DMPE bilayers were negligible. This conclusion is supported by fluorescence spectroscopy measurements on DMPC large unilamellar vesicles. All these findings indicate that the structural perturbations induced by titanium to human erythrocytes can be extended to other cells, thereby affecting their functions.  相似文献   

14.
Research on biological influence of vanadium has gained major importance because it exerts potent toxic, mutagenic, and genotoxic effects on a wide variety of biological systems. However, hematological toxicity is one of the less studied effects. The lack of information on this issue prompted us to study the structural effects induced on the human erythrocyte membrane by vanadium (V). Sodium orthovanadate was incubated with intact erythrocytes, isolated unsealed human erythrocyte membranes (IUM) and molecular models of the erythrocyte membrane. The latter consisted of bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. This report presents evidence in order that orthovanadate interacted with red cell membranes as follows: a) in scanning electron microscopy (SEM) studies it was observed that morphological changes on human erythrocytes were induced; b) fluorescence spectroscopy experiments in isolated unsealed human erythrocyte membranes (IUM) showed that an increase in the molecular dynamics and/or water content at the shallow depth of the lipids glycerol backbone at concentrations as low as 50μM was produced; c) X-ray diffraction studies showed that orthovanadate 0.25-1mM range induced increasing structural perturbation to DMPE; d) somewhat similar effects were observed by differential scanning calorimetry (DSC) with the exception of the fact that DMPC pretransition was shown to be affected; and e) fluorescence spectroscopy experiments performed in DMPC large unilamellar vesicles (LUV) showed that at very low concentrations induced changes in DPH fluorescence anisotropy at 18°C. Additional experiments were performed in mice cholinergic neuroblastoma SN56 cells; a statistically significant decrease of cell viability was observed on orthovanadate in low or moderate concentrations.  相似文献   

15.
Interaction of bovine myelin basic protein and its constituent charge isomers (C1-C3) with phospholipid bilayers was studied using solid-state NMR experiments on model membranes. 31P NMR experiments on multilamellar vesicles and mechanically aligned bilayers were used to measure the degree of protein-induced disorder in the lipid headgroup region while 2H NMR data provided the disorder caused by the protein in the hydrophobic core of the bilayers. Our results suggest that MBP and its charge isomers neither fragment nor significantly disrupt DMPC, POPC, POPC:POPG, and POPE bilayers. These results demonstrate that the MBP-induced fragmentation of POPC bilayers is due to the freeze-thaw cycles used in the preparation of multilamellar vesicles and not due to intrinsic protein-lipid interactions.  相似文献   

16.
Experimental results indicate a significant decrease in the potential difference (PD) and in the short-circuit current (Isc) after the application of proparacaine to isolated toad skin, which may reflect an inhibition of the active transport of ions. This finding was explained on the basis of the results obtained from membrane models incubated with proparacaine. These consisted of human erythrocytes, isolated unsealed human erythrocyte membranes (IUM), phospholipid multilayers built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representatives of phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively, and in large unilamellar vesicles (LUV) of DMPC X-ray diffraction showed that proparacaine interaction with DMPC and DMPE bilayers perturbed both structures, especially DMPC. This result, confirmed by fluorescence spectroscopy of DMPC LUV at 18 degrees C, demonstrated that the local anesthetic (LA) could interact with the lipid moiety of cell membranes. However, effects observed by scanning electron microscopy (SEM) of human erythrocytes and by fluorescence spectroscopy of IUM might also imply proparacaine-protein interactions. Thus, the LA may alter epitheial sodium channels through interaction with the lipid matrix and with channel protein residues.  相似文献   

17.
W C Wimley  T E Thompson 《Biochemistry》1991,30(17):4200-4204
It has previously been demonstrated that lipid exchange between phosphatidylcholine vesicles, at higher concentrations, is characterized by a second-order concentration-dependent exchange process in addition to the first-order process operative at lower concentrations (Jones, J. D., & Thompson, T. E. (1989) Biochemistry 28, 129-134). Furthermore, it was demonstrated that the second-order process occurs as a result of an enhancement of the first-order desorption process, possibly resulting from attractive interactions between a potentially desorbing lipid molecule and a transiently apposed bilayer (Jones, J. D., & Thompson, T. E. (1990) Biochemistry 29, 1593-1600). In this work we have studied the exchange of [3H]dimyristoylphosphatidylcholine (DMPC) between large vesicles of the compositions 100% DMPC, 70/30 (mol/mol) DMPC/dimyristoylphosphatidylethanolamine (DMPE), and 68.25/30/1.75 (mol/mol/mol) DMPC/DMPE/dimyristoylphosphatidylglycerol (DMPG). The second-order exchange process is enhanced by 100-fold or more in vesicles containing 30 mol % DMPE relative to 100% DMPC and is reduced or eliminated by the addition of 1.75% of the anionic lipid DMPG. These effects can be achieved by alterations in the equilibrium bilayer separation of 5 A or less. The results are in accord with the model of Jones and Thompson and indicate that relatively low concentrations of PE in a PC bilayer can have significant effects on bilayer surface properties and on potential interactions between bilayers.  相似文献   

18.
This paper examines the toxicity of the fungicide benomyl towards cell membranes. Approaches to this aim were the study of its acute effects on the stimulatory response of a frog neuroepithelial synapse and on membrane models. The latter consisted of large unilamellar vesicles of dimyristoylphosphatidylcholine (DMPC) and phospholipid multilayers built-up of DMPC and dimyristoylphosphatidylethanolamine (DMPE). Results showed that benomyl at concentrations as low as 10 μM decreased the stimulatory response of the potential difference (PD) and the short-circuit current (SCC) of the frog sympathetic junction. It is concluded that benomyl caused a dose-dependent reduction in the response of a sympathetic junction of the frog to stimulation leading to Cl channel perturbation. This finding might be explained from those obtained from fluorescence spectroscopy and X-ray diffraction studies on membrane models. In fact, similar (0.01–1.0 mM) concentrations induced structural perturbations in DMPC large unilamellar vesicles and multilayers, respectively. Although it is still premature to define the precise molecular mechanism of benomyl toxicity, the experimental results confirm the important role played by the phospholipid bilayers in the interaction of the pesticide with cell membranes.  相似文献   

19.
Zha S  Xu X  Hu H 《FEMS microbiology letters》2012,334(2):135-142
A Nostoc sp. PCC 7120 iron bioreporter containing iron-regulated schizokinen transporter gene alr0397 promoter fused to the luxAB genes was examined to optimize its response to bioavailable iron. Dose-response relationships between luciferase activity and free ferric ion (Fe(3+) ) concentrations pFe (-lg [Fe(3+) ]) were generated by measuring luciferase activities of the bioreporter in trace metal-buffered Fraquil medium with various incubation times. The results were best demonstrated by sigmoidal curves (pFe 18.8-21.7, Fe(3+) =?10(-18.8) -10(-21.7) M) with the linear range extending from pFe 19.6-21.5 (Fe(3+) =?10(-19.6) -10(-21.5) M) after a 12-h incubation time. Optimal conditions for the use of this bioreporter to sense the iron bioavailability were determined to be: a 12-h exposure time, initial cell density of OD(730?nm) =?0.06, high nitrate (100?μM), high phosphate (10?μM), moderate Co(2+) (0.1-22.5?nM), Zn(2+) (0.16-12?nM), Cu(2+) (0.04-50?nM), and wide range of Mn(2+) concentration (0.92-2300?nM). The applicability of using this iron bioreporter to assess iron availability in the natural environment has been tested using water samples from eutrophic Taihu, Donghu, and Chaohu lakes. It is indicated that the bioreporter is a useful tool to assess bioavailable iron in various water quality samples, especially in eutrophic lakes with high bioavailable iron.  相似文献   

20.
The interactions of the antimicrobial peptides aurein 1.2, citropin 1.1 and maculatin 1.1 with dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylglycerol (DMPG) and dimyristoylphosphatidylethanolamine (DMPE) were studied by differential scanning calorimetry (DSC) and Fourier-transform infrared (FTIR) spectroscopy. The effects of these peptides on the thermotropic phase behavior of DMPC and DMPG are qualitatively similar and manifested by the suppression of the pretransition, and by peptide concentration-dependent decreases in the temperature, cooperativity and enthalpy of the gel/liquid-crystalline phase transition. However, at all peptide concentrations, anionic DMPG bilayers are more strongly perturbed than zwitterionic DMPC bilayers, consistent with membrane surface charge being an important aspect of the interactions of these peptides with phospholipids. However, at all peptide concentrations, the perturbation of the thermotropic phase behavior of zwitterionic DMPE bilayers is weak and discernable only when samples are exposed to high temperatures. FTIR spectroscopy indicates that these peptides are unstructured in aqueous solution and that they fold into α-helices when incorporated into lipid membranes. All three peptides undergo rapid and extensive H-D exchange when incorporated into D2O-hydrated phospholipid bilayers, suggesting that they are located in solvent-accessible environments, most probably in the polar/apolar interfacial regions of phospholipid bilayers. The perturbation of model lipid membranes by these peptides decreases in magnitude in the order maculatin 1.1 > aurein 1.2 > citropin 1.1, whereas the capacity to inhibit Acholeplasma laidlawii B growth decreases in the order maculatin 1.1 > aurein 1.2 ≅ citropin 1.1. The higher efficacy of maculatin 1.1 in disrupting model and biological membranes can be rationalized by its larger size and higher net charge. However, despite its smaller size and lower net charge, aurein 1.2 is more disruptive of model lipid membranes than citropin 1.1 and exhibits comparable antimicrobial activity, probably because aurein 1.2 has a higher propensity for partitioning into phospholipid membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号