首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An improvement in the histochemical demonstration of soluble dehydrogenase enzymes has been obtained by preincubating frozen sections in a nitroblue tetrazolium (NBT)/ acetone solution, followed by routine incubation in polyvinyl alcohol (PVA) enriched media. Tissue binding properties of NBT were shown clearly to be decreased in histochemical media containing the colloid PVA for soluble enzymes, thus causing loss of the final reaction product (formazan) from the sections. The preincubation step in NBT/acetone allows tetrazolium salt to bind firmly to tissue lipoprotein (substantivity) and diminishes the loss of reduced formazan from heavily reacting tissue sections. The time course of NBT substantivity was examined and it was found that NBT binds rapidly to tissues (liver, kidney, heart) during preincubation, so that a preincubation of 30-60 seconds at room temperature is sufficient to improve the final morphological results greatly. Microspectrophotometric measurements of matched controls and NBT/acetone preincubated sections show that the preincubation step may slightly decrease lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G6PDH) activities. This decrease was probably due to increased binding efficiency of formazan to cell lipoproteins but was judged, however, to be irrelevant compared to the morphological advantages produced by the NBT/acetone preincubation procedure.  相似文献   

2.
An improvement in the histochemical demonstration of soluble dehydrogenase enzymes has been obtained by preincubating frozen sections in a nitroblue tetrazolium (NBT)/acetone solution, followed by routine incubation in polyvinyl alcohol (PVA) enriched media. Tissue binding properties of NBT were shown clearly to be decreased in histochemical media containing the colloid PVA for soluble enzymes, thus causing loss of the final reaction product (formazan) from the sections. The preincubation step in NBT/acetone allows tetrazolium salt to bind firmly to tissue lipoprotein (substantivity) and diminishes the loss of reduced formazan from heavily reacting tissue sections. The time course of NBT substantivity was examined and it was found that NBT binds rapidly to tissues (liver, kidney, heart) during preincubation, so that a preincubation of 30-60 seconds at room temperature is sufficient to improve the final morphological results greatly. Microspectrophotometric measurements of matched controls and NBT/acetone preincubated sections show that the preincubation step may slightly decrease lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G6PDH) activities. This decrease was probably due to increased binding efficiency of formazan to cell lipoproteins but was judged, however, to be irrelevant compared to the morphological advantages produced by the NBT/acetone preincubation procedure.  相似文献   

3.
Summary The reaction rate of glucose-6-phosphate dehydrogenase activity in liver sections from fed and starved rats has been monitored by the continuous measurement at 37 C of the reaction product as it is formed using scanning and integrating microdensitometry. Control media lacked either substrate or both substrate and coenzyme. All reactions were nonlinear; however, subtraction of either of the controls from the test response produced linearity. Differing responses in sections of livers from fed and fasted rats indicate that the appropriate control medium for use in the assay of this dehydrogenase is one lacking both substrate and coenzyme rather than a medium containing coenzyme. The reaction rate was the same with each of the final acceptors. Problems with the diffusion of the formazan of BPST and with the failure to precipitate the formazan of Neotetrazolium make Tetranitro BT and Nitro BT the tetrazolium salts of choice in quantitative dehydrogenase assays.  相似文献   

4.
In enzyme histochemistry formazan production can be used as a measure for oxidative enzyme activity. The formazan deposits can be measured quantitatively per cell with a scanning and integrating microspectrophotometer. Optimal conditions are described for the estimation of histochemical succinate dehydrogenase activity in sections of fish bodymusculature and mouse soleus and plantaris muscle. It is shown that when proper measuring conditions are chosen a ditetrazolium salt (TNBT) can be used in quantitative enzyme histochemistry and that the optimal conditions for the histochemical succinate dehydrogenase reaction in muscle fibres of fish and mouse muscle are somewhat different for these two species. The differences in pH, temperature and succinate sensitivity are the most prominent.  相似文献   

5.
Summary In enzyme histochemistry formazan production can be used as a measure for oxidative enzyme activity. The formazan deposits can be measured quantitatively per cell with a scanning and integrating microspectrophotometer. Optimal conditions are described for the estimation of histochemical succinate dehydrogenase activity in sections of fish bodymusculature and mouse soleus and plantaris muscle. It is shown that when proper measuring conditions are choosen a ditetrazolium salt (TNBT) can be used in quantitative enzyme histochemistry and that the optimal conditions for the histochemical succinate dehydrogenase reaction in muscle fibres of fish and mouse muscle are somewhat different for these two species. The differences in pH, temperature and succinate sensitivity are the most prominent.  相似文献   

6.
A synchronous enzyme-reaction system using water-soluble formazan and a non-enzymatic electron mediator was developed and applied to an enzyme immunoassay (EIA). The reaction system consists of four steps: (I) dephosphorylation of NADP(+) to produce NAD(+) by alkaline phosphatase (ALP), (II) reduction of NAD(+) to produce NADH with oxidation of ethanol to yield acetaldehyde by alcohol dehydrogenase (ADH), (III) reduction of water-soluble tetrazolium salt (WST-1) to produce formazan by NADH via 1-methoxy-5-methyl-phenazinium methyl sulfate (PMS), and (IV) re-reduction of NAD(+) to produce NADH by ADH. During each cycle, one molecule of tetrazolium is converted to one molecule of formazan. The concentration of formazan during the reaction was given by second-order polynomials of the reaction time. Kinetic studies strongly suggested that the synchronous enzyme-reaction system had the potential to detect an analyte at the attomole level in EIA. On the basis of the kinetic studies, optimal conditions for EIA incorporating the synchronous system were examined. NADP(+) was purified thoroughly to remove minor traces of NAD(+) in the preparation, and an ADH preparation contaminated with the lowest level of ALP activity was used. When the synchronous system was applied to a sandwich-type EIA for human C-reactive protein, the protein was detected with a sensitivity of 50 attomole per well of a micro-titer plate (0.1 ml) in a 1-h reaction. In addition, EIA with water-soluble formazan showed a more quantitative and sensitive result than that with insoluble formazan. These findings indicated that the (WST-1)-PMS system introduced in this study has a great potential for highly sensitive enzyme immunoassay.  相似文献   

7.
The crystals of holoenzyme from native and cross-linked alcohol dehydrogenase exhibit electron transfer from NADH to phenazinium methosulfate (PMS), and then to the tetrazolium salt sodium 3,3'-{1-[(phenylamino)carbonyl]-3,4-tetrazolium}-bis(4-methoxy-6-nitro)benzenesulfonate (XXT). The slow dissociation of the cofactor and/or the conformational change associated can now be bypassed. The reduction product, formazan, did not diffuse out of the crystals in buffer and the crystals turned colored. In the presence of dimethyl sulfoxide or dimethoxyethane, the formazan diffused out to the solution. The reaction rates were found to be, respectively, 18% and 15% of the redox reaction rate of ethanol with cinnamaldehyde, close to the activity determined for the enzyme in solution in the presence of dimethoxyethane. The use of system PMS-tetrazolium salt is a useful tool to visualize the activity of dehydrogenases and other electron transferring systems in the crystalline state. The adsorption of formazan by the alcohol dehydrogenase crystals occurs in solution.  相似文献   

8.
The correct localization of oxidative enzymes using cytochemical tetrazolium methods, in which low molecular weight electron carriers such as NAD(P)H and reduced phenazine methosulphate (PMSH) are used, can be endangered by the escape of the reduced intermediates before they react to form the insoluble formazan at the true enzyme-containing sites. To investigate this phenomenon, the glucose-6-phosphate dehydrogenase reaction was studied in fixed erythrocytes which, because of their microscopic dimensions, are well-suited for studying the loss of intermediates. A mixture of active and heat-inactivated fixed erythrocytes was incubated in a PMS-supplemented medium for glucose-6-phosphate dehydrogenase. The cytophotometric histograms showed that the final formazan precipitate was equally distributed over both active and inactivated cells. When bovine serum albumin was added to the medium, all the formazan was found to be bound to this protein and the erythrocytes remained essentially unstained. The false localization in this system could be explained by an unfavourable balance between the capture of electrons carried by NADPH within the erythrocyte and the diffusion of NADPH out of the erythrocyte. The rate constant of NADPH oxidation was determined, as was also the diffusion constant of NADPH in a protein matrix. Substituting the data obtained into formulae derived from the enzyme cytochemical localization theory of Holt & O'Sullivan (1958), it was calculated that the capture reaction was highly deficient and, theoretically, less than 1% of the total amount of formazan produced was localized within the erythrocyte which explains the false localization observed. The importance of these findings for the cytochemical demonstration of NAD(P)+-dependent dehydrogenases in cells and electropherograms is briefly discussed.  相似文献   

9.
E Severin  E Seidler 《Cytometry》1992,13(3):322-326
The reduction of tetrazolium salts to colored formazans is a reaction which has been exploited both in histo- and cytochemistry. Tetrazolium salts forming fluorescent formazans prove suitable for measuring defined cellular dehydrogenase activities in automated processes. This study considers an important aspect of formazan measurement in flow cytometry, namely, calibration. Calibration is performed by correlating the number (and fluorescence intensity) of formazan-bearing cells measured by flow cytometry with simultaneously performed biochemical analyses of the same material. The method is demonstrated by an example of glucose-6-phosphate dehydrogenase. Using the data of a typical experiment, the enzyme activity is expressed in femtomol of hydrogen transferred per cell during incubation time. Furthermore, through spatially resolved double excitation of formazan and nuclear DAPI fluorescence, an independent analysis of cell cycle and cellular enzymatic activity is established.  相似文献   

10.
We studied the effect of section thickness on the reaction rate of glucose-6-phosphate dehydrogenase (G6PD) activity in unfixed sections of rat liver by use of continuous monitoring by microdensitometry of the reaction product as it formed in the section during incubation. Tetranitro BT or nitro BT was used as final electron acceptor and polyvinyl alcohol as tissue stabilizer. Each test minus control reaction curve deviated from linearity during the first 2 min of incubation. This was mainly due to loss of low molecular weight endogenous dehydrogenase substrates from the surface of the section. For any given reaction, the same absolute amount of endogenous substrate was lost from each section, and hence a much greater proportion was lost from the thinner sections. Such losses lead to a deficit in (nonspecific) formazan production. There was a greater loss from, and hence a greater deficit in, formazan production in sections incubated at 30 degrees C than at 37 degrees C and when nitro BT was used instead of tetranitro BT, but the greatest loss of endogenous substrates occurred in sections incubated in control media. Therefore, greater losses seemed to occur when the reactions were slower because of failure to overcome the critical supersaturation level of the formazan. A consequence of this was a non-linear test minus control response during the first minutes of the incubation.  相似文献   

11.
MTT reduction is usually analysed by colorimetric assay to study mitochondrial dehydrogenase activity as a test of cytotoxicity. This enzymatic reaction produces dark-blue granules of formazan, which increase cell refringency. In this work, we define the conditions for MTT use in quantitative flow cytometric analysis. MTT reduction provides a non-fluorescent dye usable by this technique to study an intracellular NADH-dependent dehydrogenase activity in vital cells. We observe that formazan production increases asymptotically with cell concentration and that this temperature-dependent Michaelis enzymatic reduction is produced essentially by mitochondrial dehydrogenases. In isolated mitochondria from rat hepatocytes and in whole L1210 murine leukemia cells, the Michaelis constants (KM) observed in the presence of respiratory substrates were, respectively, 10 microM and 500 microM. The inhibition of mitochondrial protein synthesis by chloramphenicol, which induces a rise of MTT reduction due to the correlative stimulation of glycolysis (Pasteur effect), is a limit of the MTT assay as a cytotoxicity test.  相似文献   

12.
The mitochondrial derivative of the sperm of the gastropod pulmonate Biomphalaria glabrata was studies to ascertain succinic dehydrogenase localization cytochemically. Two techniques were compared. One technique depends on a tetrazolium salt that yields an osmiophilic formazan upon reduction. The other technique is dependent on the reduction of copper ferricyanide. The effects of several electron transport inhibitors were studied. The reaction product observed in the matrix of the mitochondrial derivative using the former technique is sensitive to rotenone and is believed to be nicotinamide adenine dinucleotide-dependent. The reaction product observed in the intracristal spaces using the copper ferricyanide method is insensitive to rotenone and is believed to cytochemically demonstrate succinic dehydrogenase in this material.  相似文献   

13.
Summary Electrons, generated from dehydrogenase reactions, are transferred to oxygen in preference to neotetrazolium chloride. In model systems in solution the presence of a small amount of oxygen drastically reduces the rate of formazan production. The rate of reaction in tissue sections has been followed using scanning and integrating microdensitometry. As in solution, electrons are transferred preferentially to oxygen. However, oxygen seems unable to diffuse through the incubation medium and thus the supply of oxygen at the site of the enzyme activity becomes exhausted; the time taken to use up the oxygen will depend on the rate of the enzyme activity. It is only then that electrons are passed to the tetrazolium salt and formazan is precipitated.  相似文献   

14.
Creatine kinase activity (EC 2.7.3.2.) has been demonstrated in myocardium and skeletal muscle from rats by a method based on the incubation of cryostat sections with a polyvinyl alcohol-containing medium and the use of auxiliary enzymes. Hexokinase and glucose-6-phosphate dehydrogenase were spread on object glasses before mounting the sections to be incubated. In this way, the auxiliary enzymes were interposed between glass slide and section thus preventing loss of formazan generated within the sections. Creatine kinase activity was found to be localized in finely dispersed form along the myofibrils and as large granules in the sarcoplasm of myocardium and skeletal muscle. The formazan produced specifically by creatine kinase (test minus control), as measured cytophotometrically at 585 nm, was completely inhibited by 2 mM 2,4-dinitrofluorobenzene, a specific inhibitor of creatine kinase activity. The control reaction was unaffected by the inhibitor. The results obtained with the present method are similar to results obtained with the far more complicated semipermeable membrane technique. The introduction of auxiliary enzymes in the polyvinyl alcohol method enables the development of histochemical methods for many enzymes by linking the reactions to a dehydrogenase reaction.  相似文献   

15.
The tetrazolium salt 3(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) is reduced to formazan by the succinate dehydrogenase system of active mitochondria, and hence, specifically used to assay for the viable cells, such as measurement of cell proliferation, cytotoxicity, and cell number. However, in the present study we have shown that some component specifically present in M199 but not in RPMI 1640 media can reduce MTT to formazan in the absence of a living system. Further study revealed that ascorbic acid reduced MTT to formazan, which was profoundly increased by a very small amount of retinol, whereas retinol alone had no effect. Oxidation of ascorbic acid by H(2)O(2) destroyed its ability to reduce MTT. The rate of MTT reduction was directly proportional to the concentration of MTT in the absence of retinol, but approached a zero-order state beyond a certain concentration of MTT in the presence of retinol. Furthermore, retinol remained unchanged after the completion of the reaction. Taken together, these results showed that retinol acts as a reductase that catalyzes the reduction of MTT to formazan using ascorbic acid as the cosubstrate (electron donor).  相似文献   

16.
Variables Affecting Two Electron Transport System Assays   总被引:1,自引:0,他引:1       下载免费PDF全文
Several methodological variables were critical in two commonly used electron transport activity assays. The dehydrogenase assay based on triphenyl formazan production exhibited a nonlinear relationship between formazan production (dehydrogenase activity) and sediment dilution, and linear formazan production occurred for 1 h in sediment slurries. Activity decreased with increased time of sediment storage at 4°C. Extraction efficiencies of formazan from sediment varied with alcohol type; methanol was unsatisfactory. Phosphate buffer (0.06 M) produced higher activity than did either U.S. Environmental Protection Agency reconstituted hard water or Tris buffer sediment diluents. Intracellular formazan crystals were dissolved within minutes when in contact with immersion oil. Greater crystal production (respiration) detected by a tetrazolium salt assay occurred at increased substrate concentrations. Test diluents containing macrophyte exudates produced greater activity than did phosphate buffer, U.S. Environmental Protection Agency water, or ultrapure water diluents. Both assays showed decreases in sediment or bacterial activity through time.  相似文献   

17.
One-hundred-and-twenty hairless mice were irradiated with UVB (310 nm, exposure 60 mJ/cm2) on a limited area of the dorsal skin. At different time intervals after irradiation, the rate of endogenous dehydrogenase activity per mg dry epidermis was measured by the tetrazolium reduction method. The amount of formazan deposited remained normal for 18 h, and then increased, reaching a peak significantly higher than normal at 24 h, and thereafter returned to normal. At day 8 there was a new, probably significant peak. The reaction was followed for 14 days. It was concluded that UVB irradiation provokes a period of increased formazan deposition in the epidermis, similar to what has been observed after ionizing radiation and chemical carcinogens. The validity of the tetrazolium test for skin carcinogenic irritaments was thus also confirmed.  相似文献   

18.
A histochemical analysis of reaction rates of a series of enzymes was performed in electromotor neurons of the weakly electric fish Apteronotus leptorhynchus. These neurons were selected because of their functional homogeneity. The high metabolic activity of these cells as well as their large size facilitate cytophotometric analysis in cryostat sections. Sections were incubated for the activity of hexokinase, glucose-6-phosphate dehydrogenase, succinate dehydrogenase, NADPH dehydrogenase, NADPH ferrihaemoprotein reductase and beta-hydroxybutyrate dehydrogenase. All media contained polyvinyl alcohol as tissue stabilizer and Nitro BT as final electron acceptor. Measurements were performed with a Vickers M85a cytophotometer. Linear relationships between the specific formation of formazan (test minus control reaction) and incubation time were obtained for all enzymes although some reactions showed an initial lag phase or an intercept with the ordinate. The relatively high activities of hexokinase, succinate dehydrogenase and the extremely low activity of hydroxybutyrate dehydrogenase indicate that energy is mainly supplied by glycolysis. Glucose-6-phosphate dehydrogenase showed a high activity whereas NADPH reductase and dehydrogenase activity were low in electromotor neurons, indicating that the NADPH generated is largely used for biosynthesis. Despite their synchronous firing pattern activity, electromotor neurons showed a considerable heterogeneity with respect to their metabolic activity.  相似文献   

19.
R G Butcher 《Histochemistry》1984,81(6):567-572
The reaction velocity of glucose-6-phosphate dehydrogenase has been quantified by continuous monitoring on a Vickers microdensitometer of the reaction product as it formed in sections of different thickness of rat tracheal epithelium. Reaction velocity was directly proportional to section thickness when either tetranitro BT or neotetrazolium was used as the final acceptor; the rate was the same with each tetrazolium salt. However, the amount of formazan deposited in a given time was not proportional to section thickness. When tetranitro BT was employed the reaction became non-linear in the thicker sections due to the inability of the instrument to record beyond a certain absorbance value. Using neotetrazolium a lag phase, due to the failure to overcome the critical supersaturation level of the formazan, preceded the linear response. The duration of this phase decreased as section thickness increased. The implications of these findings on studies using conventional "end point" methods of measurement are discussed.  相似文献   

20.
Methodological aspects of the histochemical technique for the demonstration of succinate semialdehyde dehydrogenase activity (EC 1.2.1.24) (indicative of the degradative step of gamma-aminobutyric acid catabolism) have been analysed in rat Purkinje neurons, where gamma-aminobutyric acid has been shown to be a neurotransmitter, and in hepatocytes, where it is metabolized. During a histochemical incubation for the enzyme, artefacts of succinate dehydrogenase activity and the 'nothing dehydrogenase' reaction are produced. Inhibition of these artefacts by the addition of two inhibitors, malonate and p-hydroxybenzaldehyde, revealed specific reaction products. Formazan granules, which can be ascribed only to specific succinate semialdehyde dehydrogenase activity, are obtained by adding malonate to the incubation medium in order to inhibit both succinate dehydrogenase activity and nothing dehydrogenase. The formation of these granules is completely inhibited by p-hydroxybenzaldehyde, an inhibitor of succinate semialdehyde dehydrogenase activity. Different levels of succinate semialdehyde dehydrogenase activity were noted in Purkinje neurons. This activity was also found in hepatocytes, mostly in the portal area, but with a lesser degree of intensity and specificity. Indeed, non-specific formazan granules were still produced, because of the 'nothing dehydrogenase' reaction, even in the presence of malonate. Thus, a malonate-insensitive 'nothing dehydrogenase' reaction seems to be present in neural and hepatic tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号