首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
BACKGROUND: The Drosophila eye is composed of about 800 ommatidia, each of which becomes dorsoventrally polarised in a process requiring signalling through the Notch, JAK/STAT and Wingless pathways. These three pathways are thought to act by setting up a gradient of a signalling molecule (or molecules) often referred to as the 'second signal'. Thus far, no candidate for a second signal has been identified. RESULTS: The four-jointed locus encodes a type II transmembrane protein that is expressed in a dorsoventral gradient in the developing eye disc. We have analysed the function and regulation of four-jointed during eye patterning. Loss-of-function clones or ectopic expression of four-jointed resulted in strong non-autonomous defects in ommatidial polarity on the dorsoventral axis. Ectopic expression experiments indicated that localised four-jointed expression was required at the time during development when ommatidial polarity was being determined. In contrast, complete removal of four-jointed function resulted in only a mild ommatidial polarity defect. Finally, we found that four-jointed expression was regulated by the Notch, JAK/STAT and Wingless pathways, consistent with it mediating their effects on ommatidial polarity. CONCLUSIONS: The clonal phenotypes, time of requirement and regulation of four-jointed are consistent with it acting in ommatidial polarity determination as a second signal downstream of Notch, JAK/STAT and Wingless. Interestingly, it appears to act redundantly with unknown factors in this process, providing an explanation for the previous failure to identify a second signal.  相似文献   

3.
The posteriorly expressed signaling molecules Hedgehog and Decapentaplegic drive photoreceptor differentiation in the Drosophila eye disc, while at the anterior lateral margins Wingless expression blocks ectopic differentiation. We show here that mutations in axin prevent photoreceptor differentiation and lead to tissue overgrowth and that both these effects are due to ectopic activation of the Wingless pathway. In addition, ectopic Wingless signaling causes posterior cells to take on an anterior identity, reorienting the direction of morphogenetic furrow progression in neighboring wild-type cells. We also show that signaling by Decapentaplegic and Hedgehog normally blocks the posterior expression of anterior markers such as Eyeless. Wingless signaling is not required to maintain anterior Eyeless expression and in combination with Decapentaplegic signaling can promote its downregulation, suggesting that additional molecules contribute to anterior identity. Along the dorsoventral axis of the eye disc, Wingless signaling is sufficient to promote dorsal expression of the Iroquois gene mirror, even in the absence of the upstream factor pannier. However, Wingless signaling does not lead to ventral mirror expression, implying the existence of ventral repressors.  相似文献   

4.
Dorsoventral axis formation in the Drosophila wing depends on the activity of the selector gene apterous. Although selector genes are usually thought of as binary developmental switches, we find that Apterous activity is negatively regulated during wing development by its target gene dLMO. Apterous-dependent expression of Serrate and fringe in dorsal cells leads to the restricted activation of Notch along the dorsoventral compartment boundary. We present evidence that the ability of cells to participate in this Apterous-dependent cell-interaction is under spatial and temporal control. Apterous-dependent expression of dLMO causes downregulation of Serrate and fringe and allows expression of delta in dorsal cells. This limits the time window during which dorsoventral cell interactions can lead to localized activation of Notch and induction of the dorsoventral organizer. Overactivation of Apterous in the absence of dLMO leads to overexpression of Serrate, reduced expression of delta and concomitant defects in differentiation and cell survival in the wing primordium. Thus, downregulation of Apterous activity is needed to allow normal wing development.  相似文献   

5.
6.
7.
Notch (N) activation at the dorsoventral (DV) boundary of the Drosophila eye is required for early eye primordium growth. Despite the apparent DV mirror symmetry, some mutations cause a preferential loss of the ventral domain, suggesting that the growth of individual domains is asymmetrically regulated. We show that the Lobe (L) gene is required non-autonomously for ventral growth but not dorsal growth, and that it mediates the proliferative effect of midline N signaling in a ventral-specific manner. L encodes a novel protein with a conserved domain. Loss of L suppresses the overproliferation phenotype of constitutive N activation in the ventral, but not in the dorsal eye, and gain of L rescues ventral tissue loss in N mutant background. Furthermore, L is necessary and sufficient for the ventral expression of a N ligand, Serrate (Ser), which affects ventral growth. Our data suggest that the control of ventral Ser expression by L represents a molecular mechanism that governs asymmetrical eye growth.  相似文献   

8.
Cho KO  Chern J  Izaddoost S  Choi KW 《Cell》2000,103(2):331-342
The Drosophila eye disc is a sac of single layer epithelium with two opposing sides, the peripodial membrane (PM) and the disc proper (DP). Retinal morphogenesis is organized by Notch signaling at the dorsoventral (DV) boundary in the DP. Functions of the PM in coordinating growth and patterning of the DP are unknown. We show that the secreted proteins, Hedgehog, Wingless, and Decapentaplegic, are expressed in the PM, yet they control DP expression of Notch ligands, Delta and Serrate. Peripodial clones expressing Hedgehog induce Serrate in the DP while loss of peripodial Hedgehog disrupts disc growth. Furthermore, PM cells extend cellular processes to the DP. Therefore, peripodial signaling is critical for eye pattern formation and may be mediated by peripodial processes.  相似文献   

9.
Msx1 is required for dorsal diencephalon patterning   总被引:2,自引:0,他引:2  
The dorsal midline of the neural tube has recently emerged as a major signaling center for dorsoventral patterning. Msx genes are expressed at the dorsal midline, although their function at this site remains unknown. Using Msx1(nlacZ) mutant mice, we show that the normal expression domain of Msx1 is interrupted in the pretectum of mutant embryos. Morphological and gene expression data further indicate that a functional midline is not maintained along the whole prosomere 1 in Msx1 mutant mice. This results in the downregulation of genes expressed laterally to the midline in prosomere 1, confirming the importance of the midline as a signaling center. Wnt1 is essential for dorsoventral patterning of the neural tube. In the Msx1 mutant, Wnt1 is downregulated before the midline disappears, suggesting that its expression depends on Msx1. Furthermore, electroporation in the chick embryo demonstrates that Msx1 can induce Wnt1 expression in the diencephalon neuroepithelium and in the lateral ectoderm. In double Msx1/Msx2 mutants, Wnt1 expression is completely abolished at the dorsal midline of the diencephalon and rostral mesencephalon. This indicates that Msx genes may regulate Wnt1 expression at the dorsal midline of the neural tube. Based on these results, we propose a model in which Msx genes are intermediary between Bmp and Wnt at this site.  相似文献   

10.
Singh A  Chan J  Chern JJ  Choi KW 《Genetics》2005,171(1):169-183
Dorsoventral (DV) patterning is essential for growth of the Drosophila eye. Recent studies suggest that ventral is the default state of the early eye, which depends on Lobe (L) function, and that the dorsal fate is established later by the expression of the dorsal selector gene pannier (pnr). However, the mechanisms of regulatory interactions between L and dorsal genes are not well understood. For studying the mechanisms of DV patterning in the early eye disc, we performed a dominant modifier screen to identify additional genes that interact with L. The criterion of the dominant interaction was either enhancement or suppression of the L ventral eye loss phenotype. We identified 48 modifiers that correspond to 16 genes, which include fringe (fng), a gene involved in ventral eye patterning, and members of both Hedgehog (Hh) and Decapentaplegic (Dpp) signaling pathways, which promote L function in the ventral eye. Interestingly, 29% of the modifiers (6 enhancers and 9 suppressors) identified either are known to interact genetically with pnr or are members of the Wingless (Wg) pathway, which acts downstream from pnr. The detailed analysis of genetic interactions revealed that pnr and L mutually antagonize each other during second instar of larval development to restrict their functional domains in the eye. This time window coincides with the emergence of pnr expression in the eye. Our results suggest that L function is regulated by multiple signaling pathways and that the mutual antagonism between L and dorsal genes is crucial for balanced eye growth.  相似文献   

11.
12.
The Notch pathway mediates cell-cell interaction in many developmental processes. Multiple proteins regulate the Notch pathway, among these are the products of the fringe genes. The first fringe gene was identified in Drosophila, where it is involved in the formation of the dorsal/ventral border of the wing disc. It has now been found to be crucial for determining the dorsal/ventral border of the Drosophila eye. In vertebrates, fringe genes play roles in the formation of the apical ectodermal ridge, the dorsal/ventral border in the limb bud, and in the development of somitic borders. The roles of fringe in the neural tube or the eyes of vertebrate embryos are not clear, although it is unlikely that these roles are evolutionarily related to those in the same tissues in Drosophila. Genetic evidences suggest that Fringe protein functions by modulating the Notch signaling pathway, perhaps through differential regulation of Notch activation by different ligands; however, the mechanism underlying Fringe function remains to be investigated.  相似文献   

13.
Lunatic fringe is a vertebrate homologue of Drosophila fringe, which plays an important role in modulating Notch signaling. This study examines the distribution of chick lunatic fringe at sites of neural crest formation and explores its possible function by ectopic expression. Shortly after neural tube closure, lunatic fringe is expressed in most of the neural tube, with the exception of the dorsal midline containing presumptive neural crest. Thus, there is a fringe/non-fringe border at the site of neural crest production. Expression of excess lunatic fringe in the cranial neural tube and neural crest by retrovirally mediated gene transfer resulted in a significant increase ( approximately 60%) in the percentage of cranial neural crest cells 1 day after infection. This effect was mediated by an increase in cell division as assayed by BrdU incorporation. Infected embryos had an up-regulation of Delta-1 in the dorsal neural tube and redistribution of Notch-1 to the lumen of the neural tube, confirming that excess fringe modulates Notch signaling. These findings point to a novel role for lunatic fringe in regulating cell division and/or production of neural crest cells by the neural tube.  相似文献   

14.
15.
The Iroquois complex (Iro-C) genes are expressed in the dorsal compartment of the Drosophila eye/antenna imaginal disc. Previous work has shown that the Iro-C homeoproteins are essential for establishing a dorsoventral pattern organizing center necessary for eye development. Here we show that, in addition, the Iro-C products are required for the specification of dorsal head structures. In mosaic animals, the removal of the Iro-C transforms the dorsal head capsule into ventral structures, namely, ptilinum, prefrons and suborbital bristles. Moreover, the Iro-C(-) cells can give rise to an ectopic antenna and maxillary palpus, the main derivatives of the antenna part of the imaginal disc. These transformations are cell-autonomous, which indicates that the descendants of a dorsal Iro-C(-) cell can give rise to essentially all the ventral derivatives of the eye/antenna disc. These results support a role of the Iro-C as a dorsal selector in the eye and head capsule. Moreover, they reinforce the idea that developmental cues inherited from the distinct embryonic segments from which the eye/antenna disc originates play a minimal role in the patterning of this disc.  相似文献   

16.
During the development of the Drosophila wing, the activity of the Notch signalling pathway is required to establish and maintain the organizing activity at the dorsoventral boundary (D/V boundary). At early stages, the activity of the pathway is restricted to a small stripe straddling the D/V boundary, and the establishment of this activity domain requires the secreted molecule fringe (fng). The activity domain will be established symmetrically at each side of the boundary of Fng-expressing and non-expressing cells. Here, I present evidence that the Drosophila tumour-suppressor gene lethal (2) gaint discs (lgd) is required to restrict the activity of Notch to the D/V boundary. In the absence of lgd function, the activity of Notch expands from its initial domain at the D/V boundary. This expansion requires the presence of at least one of the Notch ligands, which can activate Notch more efficiently in the mutants. The results further suggest that Lgd appears to act as a general repressor of Notch activity, because it also affects vein, eye, and bristle development.  相似文献   

17.
18.
The Drosophila eye and the wing display specific planar cell polarity. Although Frizzled (Fz) signaling has been implicated in the establishment of ommatidial and wing hair polarity, evidence for the Wnt gene function has been limited. Here we examined the function of a Drosophila homolog of Wnt4 (DWnt4) in the control of planar polarity. We show that DWnt4 mRNA and protein are preferentially expressed in the ventral region of eye disc. DWnt4 mutant eyes show polarity reversals mostly in the ventral domain, consistent with the ventral expression of DWnt4. Ectopic expression of DWnt4 in the dorsoventral (DV) polar margins is insufficient to induce ommatidial polarity but becomes inductive when coexpressed with Four-jointed (Fj). Similarly, DWnt4 and Fj result in synergistic induction of hair polarity toward the source of expression in the wing. Consistent with genetic interaction, we provide evidence for direct interaction of DWnt4 and Fj transmembrane protein. The extracellular domain of Fj is required for direct binding to DWnt4 and for the induction of hair polarity. In contrast to the synergy between DWnt4 and Fj, DWnt4 antagonizes the polarizing effect of Fz. Our results suggest that DWnt4 is involved in ommatidial polarity signaling in the ventral region of the eye and its function is mediated by interacting with Fj.  相似文献   

19.
We have analyzed the function of the Decapentaplegic (Dpp) and Hedgehog (Hh) signaling pathways in partitioning the dorsal head neurectoderm of the Drosophila embryo. This region, referred to as the anterior brain/eye anlage, gives rise to both the visual system and the protocerebrum. The anlage splits up into three main domains: the head midline ectoderm, protocerebral neurectoderm and visual primordium. Similar to their vertebrate counterparts, Hh and Dpp play an important role in the partitioning of the anterior brain/eye anlage. Dpp is secreted in the dorsal midline of the head. Lowering Dpp levels (in dpp heterozygotes or hypomorphic alleles) results in a 'cyclops' phenotype, where mid-dorsal head epidermis is transformed into dorsolateral structures, i.e. eye/optic lobe tissue, which causes a continuous visual primordium across the dorsal midline. Absence of Dpp results in the transformation of both dorsomedial and dorsolateral structures into brain neuroblasts. Regulatory genes that are required for eye/optic lobe fate, including sine oculis (so) and eyes absent (eya), are turned on in their respective domains by Dpp. The gene zerknuellt (zen), which is expressed in response to peak levels of Dpp in the dorsal midline, secondarily represses so and eya in the dorsomedial domain. Hh and its receptor/inhibitor, Patched (Ptc), are expressed in a transverse stripe along the posterior boundary of the eye field. As reported previously, Hh triggers the expression of determinants for larval eye (atonal) and adult eye (eyeless) in those cells of the eye field that are close to the Hh source. Eya and So, which are induced by Dpp, are epistatic to the Hh signal. Loss of Ptc, as well as overexpression of Hh, results in the ectopic induction of larval eye tissue in the dorsal midline (cyclopia). We discuss the similarities between vertebrate systems and Drosophila with regard to the fate map of the anterior brain/eye anlage, and its partitioning by Dpp and Hh signaling.  相似文献   

20.
P. Heitzler  M. Haenlin  P. Ramain  M. Calleja    P. Simpson 《Genetics》1996,143(3):1271-1286
A genetic and phenotypic analysis of the gene pannier is described. Animals mutant for strong alleles die as embryos in which the cells of the amnioserosa are prematurely lost. This leads to a dorsal cuticular hole. The dorsal-most cells of the imagos are also affected: viable mutants exhibit a cleft along the dorsal midline. pannier mRNA accumulates specifically in the dorsal-most regions of the embryo and the imaginal discs. Viable mutants and mutant combinations also affect the thoracic and head bristle patterns in a complex fashion. Only those bristles within the area of expression of pannier are affected. A large number of alleles have been studied and reveal that pannier may have opposing effects on the expression of achaete and scute leading to a loss or a gain of bristles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号