首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
脊髓损伤(SCI)由于复杂病理生理和神经修复再生困难,至今仍旧是难以攻克的医学难题,而干细胞因其神经再生和神经保护特性被认为是治疗SCI最有希望的方法。其中人脐带间充质干细胞(HUC-MSCs)近年培养分化方法不断改进、神经修复机制初步阐明,联合移植等综合治疗方案也不断实践,使HUC-MSCs移植治疗效果提高。另外关于HUC-MSCs治疗SCI的临床试验逐渐开展,术后患者神经功能恢复改善且无严重并发症出现,表明干细胞移植应用于人体是安全有效的。本文就HUC-MSCs治疗SCI的研究状况及进展进行综述。  相似文献   

2.
脊髓损伤是一种严重的神经损伤,脊髓损伤后在局部形成抑制神经再生的微环境,使得神经再生尤为困难.改革开放以来尤其是近20年,随着再生医学的发展,在中国科学院战略性先导科技专项、科技部重点研发计划以及国家自然科学基金委员会重点项目等支持下,我国在脊髓损伤后再生微环境的重建、脊髓损伤再生修复机制研究和临床转化研究等方面取得了显著进步.研制了具有自主知识产权的神经支架材料,建立了支架材料与再生因子或干细胞特异结合的功能生物材料制备技术;并通过移植重建有利于神经再生的微环境,建立了大段缺损的全横断脊髓损伤模型,提出神经桥接是功能生物材料促进完全性脊髓损伤动物运动恢复的主要机制;在国际上率先开展了支架材料结合细胞引导完全性脊髓损伤再生修复的临床研究,使得我国脊髓损伤再生修复的临床转化研究走在了世界前列.在国家政策的大力支持下,脊髓损伤再生修复系列产品必将填补市场空白,造福患者.  相似文献   

3.
脊髓损伤(spinalcordinjury,SCI)是一种严重的损伤,它对患者的影响是相当持久的,SCI治疗的难点主要是由于损伤后脊髓中的微环境不利于神经细胞的再生、轴突的生长和新突触的形成,从而影响了脊髓组织的修复。现在SCI治疗的策略就是要改善损伤脊髓微环境,减少不利因素,从而促进脊髓结构修复和功能重建。本研究综述近年来逐渐发展起来的药物及靶向治疗方法,为SCI的新治疗提供参考依据,真正提高患者的生活质量。  相似文献   

4.
创伤性脊髓损伤会导致患者感觉运动功能的严重缺失,严重影响生活质量,给社会和家庭带来沉重负担.针对创伤性脊髓损伤目前主要集中于处理原发性创伤损伤以及通过康复训练提高生活自理能力等方法,而对于神经再生及运动功能恢复却未有有效方法.以干细胞及生物材料为核心的再生医学技术的发展,为创伤性脊髓损伤的再生修复提供了新的治疗的可能.再生医学修复脊髓损伤的研究已逐渐进入临床试验阶段,为脊髓损伤患者的治疗带来了希望.本文对干细胞或功能细胞以及生物材料治疗创伤性脊髓损伤的临床研究现状进行了综述.  相似文献   

5.
成年哺乳类脊髓损伤后的修复与再生是一项复杂且尚未解决的挑战.随着全球经济的增长,脊髓损伤的发生率呈上升趋势.脊髓损伤可能导致永久性的运动功能障碍和感觉丧失,给患者及其家属带来极大的经济压力和心理负担.因此,迫切需要开发有效的治疗脊髓损伤的新策略.近年来,应用外源性或内源性神经元中继的治疗手段为脊髓损伤后环路重建提供了新的思路.将干细胞或生物材料等移植物作用于脊髓损伤区,可改善损伤区局部微环境,诱导神经干细胞定向分化为神经元,促进脊髓环路重建和功能恢复,因此成为较有临床应用前景的方法.本综述主要介绍细胞移植治疗、组织工程策略和基因调控等方法在修复受损脊髓的神经网络中的应用,并讨论了脊髓损伤后新生神经元是否具有潜在的功能整合,重建受损神经环路,并恢复其运动和感觉功能等问题.  相似文献   

6.
脊髓损伤造成神经组织坏死,传导通路中断,损伤平面以下运动和感觉功能丧失,导致瘫痪甚至死亡.脊髓损伤的病理变化极其复杂,早期主要为分子基因水平的改变,亚急性期主要为细胞组织水平的变化.这些变化引发继发性损伤,致使组织坏死、神经元死亡、轴突断裂并形成由瘢痕组织包裹的囊性空洞,抑制轴突再生.目前临床上仅能通过手术减压或者使用药物对症干预,无法从根本上改善受损神经的功能.脊髓损伤后功能难以恢复有多方面的原因:炎症反应贯穿脊髓损伤全过程,炎症介质导致损伤区域的神经元及胶质细胞变性坏死,轴突因瓦勒变性而萎缩;神经元再生能力弱,轴突再生乏力,并且瘢痕组织导致轴突无法穿越损伤区域与远端的轴突形成联系.本文就脊髓损伤后的病理改变进行综述并探讨修复策略.  相似文献   

7.
脊髓损伤(spinal cord injury, SCI)是中枢神经系统最严重的创伤之一,其可造成患者感觉和运动功能障碍,并且引发一系列严重的并发症。促进轴突再生是修复脊髓损伤后功能恢复的关键因素。京尼平苷酸(geniposidic acid, GA)具有神经保护作用,但其在脊髓损伤后轴突生长的作用及机制方面尚未见报道。本研究通过提取原代神经元,并建立糖氧剥夺模型(oxygen glucose deprivation, OGD)。通过RT-PCR、Western印迹、免疫荧光等方法,探讨GA对神经元轴突的促进作用及其机制。结果发现,GA可以显著促进神经元轴突生长,并呈剂量依赖性。与OGD组神经元轴突长度(22±5.788 μm)相比,给予10 μmol/L的GA可使神经元轴突长度显著增加(68±17.73 μm)。同时,轴突生长相关蛋白(GAP43,MAP2)的基因和蛋白质水平都显著上升。不仅如此,我们发现,GA促进轴突生长与稳定神经元轴突微管相关,可使A/T的比值增加约1.5倍。同时,通过建立大鼠急性脊髓损伤模型评价GA在体内的效果,与对照组相比,每天腹腔注射GA(10 mg/kg)的大鼠在术后28 d的BBB评分(11.8分)和斜板试验(41.7°)均显著增高。上述结果表明,GA可能通过稳定微管从而促进轴突再生,最终促进脊髓损伤后运动功能的恢复。因此,GA 可能成为治疗脊髓损伤的有前景的候选药物。  相似文献   

8.
脊髓损伤(spinal cord injury,SCI)是一种严重的中枢神经系统创伤性疾病。SCI最初导致血脊髓屏障(blood spinal cord barrier,BSCB)破坏。修复损伤后的血脊髓屏障是避免二次损伤和恢复运动感觉功能的关键。大豆甙(daidzin,DDZ)具有抗氧化应激和抑制炎症的作用,但尚未将其应用在脊髓损伤治疗上。本研究探讨大豆甙是否具有抑制内质网应激水平而增加细胞连接蛋白质,保护血脊髓屏障而改善脊髓损伤后大鼠的运动感觉功能的能力。通过毒胡萝卜素(thapsigargin, TG)在体外作用于内皮细胞模拟脊髓损伤后内质网应激,通过RT-PCR、Western印迹、免疫荧光、运动功能评分等实验,探讨大豆甙修复血脊髓屏障和恢复运动功能的相关机制。结果发现,大豆甙可以显著提高紧密连接蛋白(tight junction,TJ)和黏附连接蛋白(adherence junction,AJ)的表达,并呈剂量依赖性。不论是RNA水平还是蛋白质水平上,和单纯毒胡萝卜素组的连接蛋白质基因表达相比,大豆甙治疗后连接蛋白质的基因表达水平明显提高(P0.01或P0.05)。不仅如此,深入探究了大豆甙减少血脊髓屏障渗透性的机制发现,大豆甙下调内质网应激相关蛋白质水平,从而减轻炎症对血脊髓屏障的持续破坏。最后,建立了大鼠T9夹闭脊髓损伤模型,评价大豆甙在体内的效果。与对照组相比,腹腔注射大豆甙(10 mg/kg/d)治疗的大鼠,在损伤后28 d的BBB评分(9.8分)和斜板实验角度(45.3度)均显著提高。总而言之,脊髓损伤后大豆甙通过抑制内质网应激的过度激活,促进连接蛋白质的表达,减少血脊髓屏障的通透性,从而促进脊髓损伤后丧失的功能恢复。因此,大豆甙可能是治疗脊髓损伤的备选药物之一。  相似文献   

9.
目的探讨骨髓间充质干细胞(BMSC)对移植脊髓损伤(SCI)模型神经再生修复的作用及其机制。方法 (1)分离原代SD大鼠BMSC;(2)体外诱导BMSC向神经分化,应用免疫荧光技术检测神经诱导分化后的BMSC神经标志Nestin、Neu N的表达;(3)运用改良的Allen撞击装置制备SD大鼠SCI模型,成年雌性SD大鼠12只,随机分组:损伤对照(n=6),BMSC细胞移植组(n=6),并选择在SCI后半小时内在蛛网膜下腔原位移植1×106 BMSC细胞注射治疗,对照组原位注射10μl PBS作为对照。每周对SCI大鼠进行BBB运动功能行为学评价。(4)在治疗后1个月处死SCI大鼠取脊髓样本进行冰冻切片检测Nestin、NeuN神经标记物表达情况,从而评判BMSC对SCI的治疗效果。计量资料结果服从正态分布、方差齐性时,采用t检验;若不服正态分布,采用KruskalWallis H秩和检验。结果 (1)分离的BMSC纯度高、生物学特征稳定。(2)BMSC在体外神经诱导环境下可分化为神经细胞,对比正常对照组,神经诱导组Nestin与Neu N的表达具有统计学差异(t=11.49、6.76,P0.05)。(3)BMSC移植治疗SCI大鼠运动行为学功能显著改善,移植组比对照组治疗5周后的BBB评分具有统计学意义(t=5.59,P0.05);损伤导致组织形态学出现脊髓白质灰质结构性损毁,神经细胞大量丢失,而BMSC移植组Nestin、GFAP与Neu N表达细胞均较损伤组差异有统计学意义(t=4.74、6.59、15.46,均P0.05)。结论 BMSC移植可促进SCI后神经细胞的存活与再生分化,在一定程度上促进SCI脊髓组织功能的恢复。  相似文献   

10.
目的:观察姜黄素(CUR)对大鼠脊髓损伤后的运动功能的影响,并探讨其对大鼠脊髓损伤的神经保护作用机制,为临床治疗脊髓损伤提供理论和实验依据。方法:采用HI-0400脊髓打击器制备脊髓急性打击损伤动物模型。将105只SD健康清洁级大鼠随机分为3组:假手术组(Sham)、脊髓损伤组(SCI)、姜黄素组(SCI+CUR),在脊髓损伤模型建立后30 min灌胃,以后每天灌胃1次,直到处死为止。SCI+CUR组0.5%羧甲基纤维素钠制备姜黄素(100 mg/kg)灌胃,Sham组与SCI组同等剂量的0.5%羧甲基纤维素钠灌胃。应用BBB评分评估大鼠术后3d,7 d,14 d,21 d和28 d后肢运动功能恢复的情况;分别在术后12 h、1 d、3 d和7 d天取脊髓组织和血液,通过免疫荧光法检测NF-κB,免疫组化发检测Bcl-2、Bax及Caspase-3蛋白,Elisa法检测Bcl-2、Bax蛋白的表达。结果 :BBB评分中3 d时SCI+CUR组与SCI组时无明显差异,7 d、14 d、21 d和28 d SCI+CUR组得分高于SCI组,其差异具有统计学意义(P0.05);炎症因子NF-κB的表达于脊髓损伤后12 h出现,1 d达高峰,3 d下降。SCI+CUR组中NF-κB在各个时间点的表达与SCI组出现的时间点相对应,SCI+CUR组少于SCI组;Sham组无明显的Bax及Bcl-2蛋白染色。SCI+CUR组中Caspase-3及Bax染色明显较SCI组减弱,而Bcl-2较SCI组增强。结论:姜黄素可以促进大鼠脊髓损伤后后肢运动功能的恢复,其作用机制是通过抑制NF-κB而阻止炎症发生;并通过抑制Bax、Caspase-3的表达,促进Bcl-2的表达来抑制细胞凋亡,从而促进了大鼠脊髓损伤后的运动功能恢复。  相似文献   

11.
脊髓损伤(spinal cord injury, SCI)的治疗和康复一直是临床医学领域的重大难题。现代医学虽然显著提高了脊髓损伤患者的存活率,然而在改善患者损伤神经功能方面进展甚微,其原因主要在于脊髓损伤后复杂的病理生理变化。在脊髓损伤的病理过程中,原发性损伤对脊髓神经结构的伤害难以逆转,因此目前国内外研究治疗脊髓损伤的方法主要围绕减轻继发性损伤和促进再生来开展。SCI后炎症反应始终存在,这与免疫细胞在炎症反应的不同时间、不同损伤部位发挥不同作用密切相关。该文就免疫细胞在SCI后炎症微环境中的作用做一简要综述。  相似文献   

12.
脊髓损伤后胶质瘢痕的形成是阻碍神经恢复的关键原因之一。碱性成纤维细胞生长因子(basic fibroblast growth factor,bFGF)具有良好的神经保护及促进脊髓损伤的修复作用,然而其对于胶质瘢痕的影响及其机制仍不清楚。本研究通过采用血管动脉夹(30 g)夹闭雌性SD大鼠脊髓2 min造成急性脊髓损伤模型并予以每天皮下注射bFGF(80 μg/kg),探讨bFGF促进脊髓损伤的恢复作用是否涉及到胶质瘢痕调控和Nogo-A/NgR信号的相关机制。通过检测损伤后28 d,各组BBB评分和斜板试验,发现bFGF显著促进脊髓损伤后大鼠运动功能的恢复。HE及尼氏染色显示,bFGF处理组相对于生理盐水处理组,其神经元明显增多,空洞面积减少。同时,星形胶质细胞标记物GFAP免疫荧光结果表明,bFGF减少胶质瘢痕形成,抑制星形胶质细胞过度激活。同样,通过Western 印迹检测发现,bFGF处理后,胶质瘢痕相关蛋白(如GFAP, neurocan)以及神经突生长抑制蛋白(Nogo-A)信号通路相关蛋白质表达量下降。上述结果表明,bFGF可能通过抑制Nogo-A信号蛋白的表达,从而抑制胶质瘢痕的形成,促进脊髓损伤的恢复。此机制研究为脊髓损伤的治疗和恢复提供全新的思路和药物靶点。  相似文献   

13.
脊髓损伤后胶质瘢痕的形成是阻碍神经恢复的关键原因之一。碱性成纤维细胞生长因子(basic fibroblast growth factor,bFGF)具有良好的神经保护及促进脊髓损伤的修复作用,然而其对于胶质瘢痕的影响及其机制仍不清楚。本研究通过采用血管动脉夹(30 g)夹闭雌性SD大鼠脊髓2min造成急性脊髓损伤模型并予以每天皮下注射bFGF(80μg/kg),探讨bFGF促进脊髓损伤的恢复作用是否涉及到胶质瘢痕调控和Nogo-A/NgR信号的相关机制。通过检测损伤后28 d,各组BBB评分和斜板试验,发现bFGF显著促进脊髓损伤后大鼠运动功能的恢复。HE及尼氏染色显示,bFGF处理组相对于生理盐水处理组,其神经元明显增多,空洞面积减少。同时,星形胶质细胞标记物GFAP免疫荧光结果表明,bFGF减少胶质瘢痕形成,抑制星形胶质细胞过度激活。同样,通过Western印迹检测发现,bFGF处理后,胶质瘢痕相关蛋白(如GFAP,neurocan)以及神经突生长抑制蛋白(Nogo-A)信号通路相关蛋白质表达量下降。上述结果表明,bFGF可能通过抑制Nogo-A信号蛋白的表达,从而抑制胶质瘢痕的形成,促进脊髓损伤的恢复。此机制研究为脊髓损伤的治疗和恢复提供全新的思路和药物靶点。  相似文献   

14.
<正>在美国每年大约有12000例脊髓损伤(SCI)发生,该病大多数都是由车祸,高空跌落,体育事故和枪伤造成的。较好的紧急护理和治疗能够及时控制脊髓损伤,而研究人员会继续研究帮助修复脊髓损伤。《神经生理学》杂志上的一项新研究报道,周围神经刺激疗法能扭转脊髓损伤相关的神经退化,这种方法可能会改善当前的康复疗效。  相似文献   

15.
周围神经损伤是临床常见的疾病。损伤后神经的修复和再生是复杂又漫长的过程。严重的神经损伤其预后效果并不令人满意,相应支配区域的功能难以恢复,这给患者及家人带来了极大的痛苦。因此如何更好的对周围神经损伤进行治疗一直是医学界的难题。在神经修复机制的研究中,科学家发现施万细胞对周围神经的修复和再生起到了非常重要的作用,但获取和扩增的困难限制了其临床的应用。随着生物医学的发展,人们把目光投向了干细胞,经实验发现干细胞不仅具有旺盛的增殖能力,而且可以分化为神经系细胞,还能分泌相关的神经营养因子促进神经的修复和再生,这为周围神经损伤后的治疗带来了新的希望。本文就近些年来应用于修复周围神经的干细胞及促进修复机制的研究做以综述。  相似文献   

16.
心肌再生途径的研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
心急梗塞等心脏疾病可造成心肌的损伤。相继会发生心室扩张、癍痕、心脏功能紊乱。目前时心脏疾病的治疗主要通过药物和器官移植,因药物治标不治本和移植器官匮乏限制了治疗的效果,严重影响病人的身体健康。最近研究发现,相关细胞因子或基因、干细胞移植可使损伤区心肌细胞和血管再生及诱导内源性干细胞转移,从而修复损伤心肌并恢复心脏功能。以上研究成果及其临床的应用将成为损伤性心肌有效的治疗途径。本文着重阐明了相关细胞因子、基因和干细胞移植时心肌再生作用机制的研究现状。  相似文献   

17.
脊髓损伤(spinal cord injury,SCI)是一种由于脊髓外部损伤或内部病变引起的暂时性或永久性的功能损伤,其症状包括肌肉功能损伤、自主运动功能减退或丧失等。目前,流行病学调查发现,我国SCI患病率较高,具有较高的社会和医疗负担。因此,合理引导SCI病人进行治疗和康复尤为重要。硫化氢(hydrogen sulfide,H2S)是一种重要的神经信号分子,近年来H2S对SCI康复的作用机制逐渐成为研究热点,例如一些国内外研究团队对SCI后缺血-再灌注损伤(ischemia reperfusion injury,I/R injury)、降低SCI后氧化应激及抗炎作用等机制,以及SCI康复临床治疗研究均取得了一定的成果。本文通过H2S对SCI康复的机制研究和临床治疗发展进行综述,旨在为后续研究及临床应用提供参考。  相似文献   

18.
脊髓损伤(spinal cord injury,SCI)是一种由于脊髓外部损伤或内部病变引起的暂时性或永久性的功能损伤,其症状包括肌肉功能损伤、自主运动功能减退或丧失等。目前,流行病学调查发现,我国SCI患病率较高,具有较高的社会和医疗负担。因此,合理引导SCI病人进行治疗和康复尤为重要。硫化氢(hydrogen sulfide,H2S)是一种重要的神经信号分子,近年来H2S对SCI康复的作用机制逐渐成为研究热点,例如一些国内外研究团队对SCI后缺血-再灌注损伤(ischemia reperfusion injury,I/R injury)、降低SCI后氧化应激及抗炎作用等机制,以及SCI康复临床治疗研究均取得了一定的成果。本文通过H2S对SCI康复的机制研究和临床治疗发展进行综述,旨在为后续研究及临床应用提供参考。  相似文献   

19.
脊髓损伤后的常规治疗手段是在有效时间内进行手术缓减外力压迫,防止脊髓神经进一步受损。细胞替代治疗理论上可治愈脊髓损伤,不同类型细胞可从各角度产生治疗作用,包括损伤后的脊髓轴突再生、神经元再建和轴突髓鞘化等,进而促进功能恢复。对近年来干细胞治疗脊髓损伤研究中的最新结果进行了概述,以期为干细胞治疗脊髓损伤的研究提供参考。  相似文献   

20.
周围神经损伤的修复是临床外科中的一个难题。尽管周围神经系统在损伤后具有内在的自我修复能力,但一般很难达到完全功能恢复,特别是近端的损伤或者大段的神经缺损。近年来,基于干细胞的细胞治疗为周围神经再生带来了曙光。大量研究表明干细胞可促进周围神经损伤的再生,然而其作用机制还不明确。为此,本文将对脂肪干细胞在周围神经损伤修复中作用包括向雪旺细胞分化、神经营养、血管形成、神经元保护、靶器官保护和免疫调节等作用进行归纳,并进一步探讨其潜在的作用机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号