首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
微生物的电子传递过程在生命进化和生物地球化学循环中发挥着关键作用。近年来,随着微生物电子传递研究的深入开展,微生物纳米导线、导电生物被膜及种间电子传递等多种新型的微生物胞外电子传递机制不断被发现,微生物电子传递的距离也从纳米级拓展至厘米级。这些微生物的长距离电子传递过程环环相扣、相互协同,从而构成长距离电子传递网络,并在物质循环和能量转化中共同发挥作用。微生物长距离电子传递网络的结构功能及其调控机制已成为多个学科共同关注的焦点。本文以电子传递的距离为主线,对不同尺度的微生物长距离电子传递过程及网络研究的新进展进行综述,包括纳米尺度的电子传递网络(周质空间和外膜表层)、微米至毫米尺度的电子传递网络(纳米导线、细胞间电子和导电生物被膜)、厘米尺度的电子传递网络(电缆细菌)等,并分析了该研究现存的主要问题和下一步的发展方向,以期为进一步推进微生物长距离电子传递网络理论和应用研究提供科学参考。  相似文献   

2.
张晓蓉 《微生物学报》2011,51(3):297-304
基于发展纳米材料"绿色合成技术"重要性,生物合成纳米材料已成为纳米合成技术研究热点。微生物具有廉价、易培养、繁殖快等优点被应用于多种纳米材料的生物合成研究,成为生物合成纳米材料的重要生物类群。本文综述了细菌、放线菌、酵母菌以及真菌等微生物应用于纳米生物合成技术的发展;着重评述了纳米材料微生物合成生物方法、纳米材料微生物合成相关机制、纳米材料形貌和尺寸微生物调控合成方法以及应用研究进展;并对纳米材料微生物合成技术未来发展趋势进行了展望。  相似文献   

3.
基于微生物生物合成纳米颗粒机制的研究进展   总被引:1,自引:0,他引:1  
纳米粒子的合成方法多种多样,包括物理法、化学法和生物合成法,其中生物合成法是以生物为基体的绿色合成方法。由于微生物易于培养、生长快、廉价易得,已成为纳米粒子生物合成法的重要生物类群。微生物和纳米材料的多样性决定了其合成机制的多样化。本文结合国内外的科研报道,着重介绍了目前纳米粒子生物合成机制,并对纳米粒子微生物合成技术未来发展趋势进行了展望。  相似文献   

4.
银纳米粒子具有抗菌、抗癌、抗病毒等多种生物活性。生物法合成银纳米粒子在合成过程中绿色环保,无需二次改性,具有很好的稳定性、安全性、兼容性,在生物医药方面具有显著优势。近年来,人们在银纳米粒子的生物合成方法与机制,以及生物合成的银纳米粒子用于敷料、涂层、载药等方面的技术研发方面取得了长足进展。现对这些最新研究成果进行归纳和总结,以期为后续研究提供参考。  相似文献   

5.
对羟苯基丙酮酸双加氧酶(ρ-hydroxyphenylpyruvate dioxygenase,HPPD;EC 1.13.11.27)催化生物体内对羟苯基丙酮酸与O2作用形成尿黑酸的反应,是植物体中质体醌和生育酚生物合成途径的关键酶。当其活性受到抑制时,植物体中作为类胡萝卜素生物合成途径中最终电子受体和光合链电子传递体的质体醌的生物合成受阻,进而导致类胡萝卜素合成减少,光合链电子传递受阻,致使植物体出现白化症状。目前已经开发了多种以HPPD为靶标的除草剂,该类除草剂及抗除草剂转基因植物研究具有广阔的前景。对这一新型白化型除草剂靶标酶以及耐该类除草剂转基因植物的研究进展作了简要综述。  相似文献   

6.
【背景】低碳氮比生活污水很难达标处理,多级A/O工艺、生物强化技术及生物膜技术的有机结合可有效解决这一问题。【目的】开发出一种泥膜共生多级A/O工艺并进行中试研究,驯化出高效脱氮除磷菌剂并对系统进行生物强化。【方法】通过测定中试设备出水及污水处理厂出水化学需氧量(Chemical oxygen demand,COD)、氨氮(NH_4~+-N)、硝氮(NO_3~--N)、总氮(Total nitrogen,TN)、总磷(Total phosphorus,TP)对比分析两种工艺的污染物去除效能,利用高通量测序技术对比生物强化技术对系统微生物群落结构的影响。【结果】中试设备对COD、NH_4~+-N、NO_3~--N、TN、TP的去除效果均优于污水处理厂的处理工艺;驯化的低温好氧反硝化菌TN去除率最大值可达84.21%,驯化的低温反硝化聚磷菌群对磷的去除率最高可达85.75%;利用驯化菌群对中试设备进行生物强化后较好地改善了系统NH_4~+-N、NO_3~--N、TN、TP的去除效果;经生物强化后,具有好氧反硝化和反硝化聚磷功能的Pseudomonas菌群明显增多。【结论】泥膜共生多级A/O工艺对于低碳氮比生活污水的处理具有很好的效果,利用生物强化技术可有效提高低温条件下系统污染物去除效能。  相似文献   

7.
[目的]分离高产生物硫铁生成菌,初步鉴定并研究其生成限制因素及处理重金属效果。[方法]利用分离驯化出的1株高产生物硫铁复合材料(生物硫铁)的硫酸盐还原菌(srb1),考察硫酸亚铁浓度、有机物浓度以及搅拌速度对其生成生物硫铁的影响。[结果]有机物和Fe SO4·7H2O的浓度是制约生物硫铁生成的关键因素,生物硫铁处理重金属Cr6+、Pb2+、Cd2+、Cu2+效果显著,去除率达90%以上,尤其是处理重金属Cu2+废水最佳,去除率达99%以上。[结论]筛选到生物硫铁生成菌srb1,初步鉴定为梭状芽胞杆菌属Clostridium mesophilum。确定了生物硫铁生成的最佳培养条件为乳酸钠15 m L/L+酵母膏8 g/L+Fe SO4·7H2O 15 g/L。  相似文献   

8.
由于难降解有机污染物和外界环境对水处理系统的冲击干扰,污水水质常出现不达标现象。引入外源含有相关功能基因并且具有基因水平转移能力的工程菌株进行生物强化处理是提高污水处理效能的有效措施。污水处理系统中存在能够分泌信号分子的菌体,菌间具有群体感应现象,当种群密度达到感应阈值时,菌体会通过释放信号分子来触发一些群体行为,从而激活相关基因的表达(如生物膜形成、生物发光、抗生素合成和毒力因子表达等)。早期的群体感应技术研究主要集中在信号传递学、微生物社会行为学和医学微生物领域,近年来,在水处理领域也开始有相继报道,研究表明群体感应在污水生物处理中发挥重要作用,并且影响生物强化菌株的定殖和污染物降解,因此群体感应行为调控是生物强化技术成效显著与否的关键因素。本文综述了群体感应及信号分子的作用机制、信号分子释放及存在的影响因素以及群体感应对菌株定殖、微生物群落结构和污染物去除的影响,并对从群体感应角度出发研究生物强化过程进行了展望,旨在为生物强化技术的有效实施及提升污水处理效能提供一种新思路,为深入理解生物强化过程中群体感应调控行为提供理论参考。  相似文献   

9.
电活性微生物奥奈达希瓦氏菌的胞外电子传递(extracellular electron transfer,EET)在污染物降解、环境修复、生物电化学传感、能源利用等方面具有广泛的应用潜力;四血红素细胞色素CctA (small tetraheme cytochrome)是希瓦氏菌周质空间中最丰富的蛋白质之一,能够参与多种氧化还原过程,但目前对CctA在EET中的行为和机理认识仍然有限。【目的】研究阐明CctA蛋白在希瓦氏菌模式菌株MR-1周质空间以偶氮染料作为电子受体的EET中的作用,补充和拓展希瓦氏菌的厌氧呼吸产能机制。【方法】以周质还原型偶氮染料甲基橙(methyl orange,MO)作为电子受体,在mteal reduction (Mtr)蛋白缺失菌株Δmtr中研究MO的周质还原特点,并通过基因敲除和回补表达研究CctA蛋白在周质电子传递中的作用。【结果】在缺失Mtr通道的情况下,细胞色素CctA可以介导周质空间的电子传递而还原MO。重组表达CctA在低水平时,MO在周质空间中的还原速率与其表达水平呈正相关,更高水平的CctA表达无助于进一步提高MO的还原速率。蛋白膜伏安结果展示了CctA与周质空间内其他高电位氧化还原蛋白的显著区别,可能参与构成一条低电位的MO还原通道。【结论】从分子动力学层面揭示了CctA在周质MO还原中的独特电子传递行为,为进一步推进对细菌周质电子传递机制的理解,以及通过合成生物学设计或改造胞外氧化还原系统、强化生物电化学在污染物降解中的应用提供了重要信息。  相似文献   

10.
中欧合作项目"面向有机污染物消除的‘微生物、植物、电’多效耦合作用机制及低能耗型修复技术"是由中国国家自然科学基金委和欧盟共同资助的重大国际合作项目。该项目研究领域属于环境生物技术,研究团队包括5个中方单位和17个欧方单位,项目主要围绕新有机污染物的生物降解过程和机制、低能耗生物修复技术开展研究工作。项目执行2年来,在降解污染物的微生物资源、弱电介入增效生物降解和强化电子传递、微生物3D打印等方面取得了阶段性成果的同时,项目团队还开展了有效的交流和实质性合作。未来,项目团队将克服新冠疫情影响,强化中欧双方团队内部和团队之间的合作交流,全面实现项目科学目标,圆满完成国际合作任务。  相似文献   

11.
生物吸附剂对污染物吸附的细胞学机理   总被引:3,自引:0,他引:3  
蔡佳亮  黄艺  礼晓 《生态学杂志》2008,27(6):1005-1011
重金属和持久性有机污染物在自然界中非常稳定,具有难去除性,对人类生命和健康会造成直接或间接的危害.目前,生物吸附剂已成为处理重金属和持久性有机污染物研究的热点和重点.本文根据近年来的研究成果对生物吸附剂进行了系统分类,阐述了生物吸附剂对重金属和持久性有机污染物吸附的细胞外、细胞表面和细胞内吸附机理,以及相关的影响因素.同时,还探讨了其研究现状中所存在的问题和未来的研究方向.  相似文献   

12.
微生物胞外呼吸电子传递机制研究进展   总被引:8,自引:2,他引:8  
马晨  周顺桂  庄莉  武春媛 《生态学报》2011,31(7):2008-2018
胞外呼吸是近年来发现的新型微生物厌氧能量代谢方式,主要包括铁呼吸、腐殖质呼吸与产电呼吸3种形式。微生物胞外呼吸与传统的有氧呼吸、胞内厌氧呼吸存在显著差异。其电子受体多以固态形式存在于胞外;氧化产生的电子必须通过电子传递链从胞内转移到细胞周质和外膜,并通过外膜上的细胞色素c、纳米导线或自身产生的电子穿梭体等方式,最终将电子传递至胞外的末端受体。胞外呼吸的本质问题是微生物与胞外电子受体(铁/锰氧化物、固态电极或腐殖质等)的相互作用,即微生物如何将胞内电子传递至胞外受体。胞外呼吸的研究丰富了人们对微生物呼吸多样性的认识,同时在污染物原位修复及清洁生物能源提取方面具有重要应用前景,是当前研究的热点问题。总结了胞外呼吸类型和胞外呼吸菌的多样性,重点阐述了胞外呼吸的电子传递过程,并提出了其应用前景及今后的研究方向。  相似文献   

13.
酸性矿山废水(AMD)中含有高浓度的硫酸盐和金属离子,对矿山生态环境造成了严重的危害。硫酸盐还原菌(SRB)可以将SO42-还原为S2-,沉淀金属离子,并生成生物硫铁,其处理效率较高。文章利用农业废弃物秸秆制备SRB的缓释碳源,考察了不同形式的碳源条件下SRB对酸性矿山废水特征污染组分的处理效果,并结合SRB原位生成的生物硫铁包覆颗粒,制备得到SRB-生物硫铁复合材料,通过批量实验和动态柱实验考查SRB-生物硫铁复合材料对高浓度模拟废水和实际矿井水的处理效果。结果显示:在pH为5.5时,将秸秆渣作为游离SRB的碳源是可行的,但与秸秆渣相比,秸秆生物炭的处理效率明显更高,将秸秆生物炭与乳酸钠结合制备的SRB碳源,激活SRB的时间更短,12 h内对SO42-和Fe2+的去除率分别达到了59.25%和79.56%。在此实验范围内,随着生物炭投加量的增大,去除效率逐渐提高,在p H为4.5~6.5的范围内,体系初始p H对SRB反应体系的处理效果影响不大。SRB-碳源与生物硫铁包覆颗粒结合后对高浓度的SO42-和Fe2+模拟废水能保持高效且持久的反应活性。动态柱实验表明SRB-生物炭-生物硫铁...  相似文献   

14.
刘春  黄霞  杨景亮 《微生物学报》2008,35(2):0286-0290
基因强化通过强化降解基因在土著菌群中的水平迁移和传播, 促进土著降解菌群的进化, 改善基因工程菌生物强化作用的稳定性, 提高难降解污染物的生物去除效果。介绍了基因强化的原理-微生物群落内水平基因迁移, 讨论了基因载体、细胞接触条件和环境条件等影响基因强化的因素, 综述了目前基因强化在土壤生物修复和废水生物处理中的应用现状, 并提出了基因强化中存在的问题。  相似文献   

15.
利用微生物合成纳米金银合金(Au-AgNPs)具有操作简便、生态友好等特点,但目前利用真菌合成的相关研究较少。本研究利用真菌Mariannaea sp. HJ胞内提取物合成纳米金银合金,考察了不同的金银离子浓度比例对生物合成纳米金银合金特性的影响。实验表明,金银离子浓度比例对生物纳米金银合金的组成影响较大,随着银离子浓度比例的增加,反应体系颜色会由浅紫色逐渐变为棕色,紫外-可见特征吸收峰发生了明显的蓝移,合成的纳米金银合金中银的比例也会逐渐增加。透射电子显微镜表明纳米金银合金的形貌主要为球形和伪球形,在0.5∶0.5、0.5∶1.5以及0.5∶3.0三种金银离子浓度比例下,纳米颗粒的平均粒径分别为19.24 nm、15.99 nm和19.33 nm。X射线衍射光谱结果显示纳米金银合金的晶胞为面心立方结构。利用傅里叶转换红外线光谱表征推测参与纳米金银合金还原稳定的官能团可能为-OH、-NH_3、-COOH。此外,本研究以4-硝基苯酚为底物探究生物纳米金银合金的催化特性,结果表明纳米金银合金对4-硝基苯酚具有良好的催化活性,其催化反应速率常数为7.85×10–3 s–1。上述结果表明,真菌Mariannaea sp. HJ能够合成分散性较好的纳米金银合金,在催化还原硝基芳烃污染物方面具有潜在的应用价值。  相似文献   

16.
城市河道及附近水体底泥是重金属和持久性有机污染物的重要汇集地。本研究以Pb-菲复合污染底泥为对象,探索铁基生物炭联合微生物电化学技术对底泥的原位修复效果与机理。结果表明,通过浸渍烘干法制备的铁基生物炭表面铁以Fe3O4和γ-Fe2O3为主,具有磁性。铁基生物炭联合生物电化学(0.2 V)使底泥中菲的去除速率提高6.75倍,主要原因在于阳极可作为电子受体强化底泥中菲的共代谢降解,额外投加葡萄糖加速了底泥菲的生物电化学降解,导致菲的去除速率增大1.09倍。同时,阳极生物电化学过程降低了底泥pH,促进了底泥Pb向弱酸可溶态转化,在电场力作用下向阴极迁移并转化为残渣态。高通量测序结果表明,铁基生物炭联合生物电化学促进了底泥中Tissierella、Erysipelotrichaceae和Pseudomonas三类细菌的生长,导致了菲的生物电化学强化降解及Pb活化。  相似文献   

17.
基因强化在难降解污染物生物处理和修复中的应用   总被引:2,自引:0,他引:2  
刘春  黄霞  杨景亮 《微生物学通报》2008,35(2):0286-0290
基因强化通过强化降解基因在土著菌群中的水平迁移和传播,促进土著降解菌群的进化,改善基因工程菌生物强化作用的稳定性,提高难降解污染物的生物去除效果.介绍了基因强化的原理-微生物群落内水平基因迁移,讨论了基因载体、细胞接触条件和环境条件等影响基因强化的因素,综述了目前基因强化在土壤生物修复和废水生物处理中的应用现状,并提出了基因强化中存在的问题.  相似文献   

18.
排放到环境中的各种农药、多环芳烃、卤代芳烃等有机污染物以及阻燃剂等新兴污染物,对环境污染、农产品质量和环境安全造成了沉重负担。因此,有效去除环境中的有机污染物已成为迫在眉睫的挑战。3D生物打印技术已经在医学材料、制药等行业中发挥着重要作用。现在,越来越多的微生物被确定适合通过3D生物打印生产具有复杂结构和功能的生物材料。微生物的3D生物打印越来越受到环境微生物学家和生物技术专家的关注。本文综述了用于污染物微生物去除的不同3D生物打印技术的原理和优缺点,及用于微生物生物修复技术的可行性,并指出了可能遇到的限制和挑战。  相似文献   

19.
微生物胞外呼吸是厌氧环境中控制性能量代谢方式,直接驱动着C、N、S、Fe等关键元素的生物地球化学循环。微生物纳米导线(Microbial nanowires)的发现,被认为是微生物胞外呼吸的里程碑事件,推动了电微生物学(Electromicrobiology)的形成与发展。微生物纳米导线是一类由微生物合成的,具有导电性的纤维状表面附属结构。通过细菌纳米导线,微生物胞内代谢产生的电子可以长距离输送到胞外受体或其他微生物,改变了电子传递链仅仅局限于细胞胞内的认识,从而大大拓展了微生物-胞外环境互作的范围。微生物纳米导线的良好导电性,赋予了其作为天然纳米材料的广阔应用前景。目前,微生物纳米导线的导电机制、生态功能及其在生物材料、生物能源、生物修复及人体健康多领域的应用,已经成为新兴电微生物学的前沿与热点。然而,微生物纳米导线的生物学、生态学功能尚不清楚,它的电子传递机制仍存在分歧。本文在系统性总结微生物纳米导线性质、功能的基础上,以Geobacter sulfurreducensShewanella oneidensis纳米导线为模型,详细阐述了纳米导线的组成与结构、表征与测量方法、导电理论(类金属导电学说与电子跃迁学说)及其潜在的应用,最后提出了未来微生物纳米导线研究的重点方向、挑战与机遇。  相似文献   

20.
吕红  张欣  周杨  周集体 《微生物学通报》2020,47(10):3419-3430
氧化还原介体能够加速有毒环境污染物的厌氧生物转化。黄素类化合物是一类微生物自身合成分泌的氧化还原介体,其应用可有效地避免外源性介体带来的成本较高及造成二次污染的问题,因此引起了广泛的关注。研究表明,细菌合成的微量黄素类化合物不仅能够作为黄素蛋白的辅酶因子参与偶氮染料、铬酸盐和硝基芳烃等污染物的厌氧生物转化,并且还可以分泌到胞外将电子传递给固态电子受体如含铁矿物和电极等来参与生物修复过程。根据黄素类化合物的功能,本文综述了黄素类化合物的合成与分泌,及其介导的胞内外电子传递和对环境污染物厌氧生物转化的影响,以促进其在实际环境污染物处理中的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号