首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
碱基编辑是一种新兴的基因组编辑技术,具有不产生双键断裂、不依赖同源重组且不需要添加外源模板的优势,在真核及原核生物中得到了广泛的开发与应用。为了进一步扩展碱基编辑技术在谷氨酸棒杆菌中的基因组覆盖范围,本研究将3种PAM限制较为宽松的新型Cas9突变体应用于胞嘧啶碱基编辑工具中,分别为近乎PAMless的SpRY突变体(NRN>NYN PAM)、SpG突变体(NGN PAM),以及ScCas9++蛋白(NNG PAM),实现对碱基编辑工具的PAM拓展。结合SpRY突变体的碱基编辑系统展示出了更宽松的PAM识别,除对CAT、CAC、TAA PAM的位点完全没有编辑外,对其他NRN种类的PAM位点均出现了不同程度的识别,但整体编辑效率低,难以推广应用;结合SpG突变体的碱基编辑系统可实现对所有NGN种类PAM位点的编辑,且编辑效率优于SpRY突变体,但对NGG PAM位点的编辑,相比原始Cas9蛋白,编辑效率下降9.3%-55.9%;结合ScCas9++蛋白的碱基编辑系统,除对TCG、CTG PAM的基因组位点没有编辑外,可实现对其他测试NNG PAM的基因组位点编辑,大部分位点基因组...  相似文献   

2.
近年来,基于CRISPR/Cas9的碱基编辑技术因其具有不产生DNA双链断裂、无需外源DNA模板、不依赖宿主同源重组修复的优势,已经逐渐发展成为一种强大的基因组编辑工具,在动物、植物、酵母和细菌中得到了开发和应用。研究团队前期已在重要的工业模式菌株谷氨酸棒杆菌中开发了一种多元自动化的碱基编辑技术MACBETH,为进一步优化该方法,提高碱基编辑技术在谷氨酸棒杆菌中的应用效率,本研究首先在谷氨酸棒杆菌中构建了基于绿色荧光蛋白(GFP)的检测系统:将GFP基因的起始密码子ATG人工突变为ACG,GFP无法正常表达,当该密码子的C经编辑后恢复为T,即实现GFP蛋白的复活,结合流式细胞仪分析技术,可快速衡量编辑效率。然后,构建针对靶标位点的碱基编辑工具,经测试,该位点可成功被编辑,在初始编辑条件下碱基编辑效率为(13.11±0.21)%。在此基础上,通过对不同培养基类型、诱导初始OD600、诱导时间、诱导物浓度进行优化,确定最优编辑条件是:培养基为CGXII,初始OD600为0.05,诱导时间为20 h,IPTG浓度为0.01 mmol/L。经过优化,编辑效率达到(30.35±0.75)%,较初始条件提高了1.3倍。最后,选取原编辑条件下编辑效率较低的位点,进行了优化后编辑条件下的编辑效率评估,结果显示,不同的位点在最优编辑条件下的编辑效率提高了1.7–2.5倍,进一步证实该优化条件的有效性及通用性。研究结果为碱基编辑技术在谷氨酸棒杆菌中更好的应用提供了重要的参考价值。  相似文献   

3.
作为新型的基因组编辑工具,碱基编辑技术结合了CRISPR/Cas系统的定位功能和碱基脱氨酶的编辑功能,可实现特定位点的碱基突变,具有不产生双链DNA断裂,无需外源模板且不依赖染色体DNA同源重组的优势.目前,研究者们已在重要的工业生产菌株谷氨酸棒杆菌(Corynebacterium glutamicum)中开发了多种碱...  相似文献   

4.
碱基编辑技术,以CRISPR/Cas系统为平台,引导胞嘧啶脱氨酶或腺嘌呤脱氨酶至特定的基因组靶点,产生靶向性的C至T或者A至G的碱基转换。自碱基编辑技术问世以来,全球多个科研团队通过优化改进得到了一系列高精准性、广靶向性、小编辑框、普适性的碱基编辑器。在应用方面,碱基编辑器能够在人体细胞、动植物细胞以及胚胎中进行高效的碱基转换,在治疗人类遗传病、构建动物疾病模型、植物育种等方面具有巨大的应用潜能。本文就碱基编辑技术的发展、优化和应用等方面进行综述和展望。  相似文献   

5.
【目的】在巴斯德毕赤酵母(Pichia pastoris)中建立一套分子靶向突变系统,为毕赤酵母的基因工程改造提供高效的编辑工具。【方法】基于规律成簇的间隔短回文重复序列/Cas9核酸酶(clustered regularly interspaced short palindromic repeats/Cas9 nuclease,CRISPR/Cas9)技术,设计并构建nCas9与胞苷脱氨酶融合表达的胞嘧啶碱基编辑器(cytosine base editor,CBE),并选择酵母基因组中富含碱基C的一段序列作为靶标以评价CBE的碱基编辑功能。电转化酵母后,利用高通量测序技术分析CBE的编辑效率及编辑模式,并进一步探究连接肽长度、融合蛋白相对位置和gRNA靶向序列(即spacer)长度等因素对CBE功能的影响。【结果】nCas9与PmCDA1融合组成的CBE能够实现毕赤酵母基因组碱基C的高效编辑。当连接肽长度为(GGGGS)10时,CBE的编辑效率最高,编辑窗口位于前间隔序列邻近基序(protospacer adjacent motif,PAM)远端的C20–C14之间,其中C18的编辑效率可达85.1%。nCas9与PmCDA1相对位置的改变对CBE的编辑效率和编辑模式的影响不大。而gRNA靶向序列长度影响着CBE的编辑效率,且gRNA靶向序列长度不能低于17 nt,但19–23 nt之间均可引导CBE对基因组的高效编辑。【结论】本研究在巴斯德毕赤酵母中构建了一套具有高效碱基编辑活性的胞嘧啶碱基编辑器,为基于毕赤酵母的基础和应用研究提供了工具支持。  相似文献   

6.
碱基编辑器是近两年发展起来的新型基因组编辑工具,它将碱基脱氨酶的催化活性和CRISPR/Cas系统的靶向特异性进行结合,催化DNA或RNA链上特定位点的碱基发生脱氨基反应,进而完成碱基的替换。碱基编辑器分为DNA和RNA碱基编辑器两大类,其中DNA碱基编辑器分为两种:胞嘧啶碱基编辑器和腺嘌呤碱基编辑器;前者可以实现胞嘧啶到胸腺嘧啶的转换,而后者则可以将腺嘌呤突变为鸟嘌呤。由于DNA碱基编辑器不会造成DNA的双链断裂(DSB),也不依赖于宿主的非同源末端修复和同源重组途径,因此,大大减少了DSB相关的编辑副产物,如小片段插入或缺失等。基于CRISPR/Cas系统的RNA碱基编辑器,可以实现RNA链上腺嘌呤核苷到次黄苷的转换。本文对不同类型碱基编辑器的开发过程、适用范围和编辑特点等进行梳理,并对其在细菌基因组编辑中的应用进行了介绍;最后简要探讨了细菌中碱基编辑器的缺点以及将来可能的研究方向。  相似文献   

7.
徐鑫  刘明军 《生物工程学报》2021,37(7):2307-2321
CRISPR系统能够在基因组DNA中完成精准编辑,但依赖于细胞内的同源重组(Homology directed recombination,HDR)修复途径,且效率极低.基于CRISPR/Cas9系统开发的碱基编辑技术(Base editing)通过将失去切割活性的核酸酶与不同碱基脱氨基酶融合,构建了两套碱基编辑系统(...  相似文献   

8.
在众多生物中利用具有切割作用的CRISPR/Cas9系统与非同源性末端连接(non-homologous end joining,NHEJ)修复系统或同源性末端连接(homology-directed repair,HDR)修复系统共同完成基因编辑工作都有报道。但是由于NHEJ的不精确性以及一些微生物中HDR效率较低导致生物体死亡限制了该工具的发展。基于CRISPR/dCas9系统构建而成的DNA碱基编辑器作为一种编辑工具,可靶向地实现碱基之间的转换,且不导致微生物死亡。DNA碱基编辑器在微生物中已经实现靶向编辑工作,可以同时多个位点进行编辑,同时可以利用该工具将编码氨基酸的密码子转化为终止密码子,提前终止翻译过程实现对基因的失活。本文主要对DNA碱基编辑器的作用原理,发展历程以及在微生物中的应用做了概述,最后提出了该工具存在的一些不足之处,并结合相关研究展望了未来的研究方向。为在微生物中开发与利用DNA碱基编辑的研究提供了思路。  相似文献   

9.
谷氨酸棒杆菌是生产氨基酸、有机酸等的重要菌株,广泛应用于食品、医药领域。利用基因编辑技术对谷氨酸棒杆菌进行基因功能研究,在提高目的产物产量、发现新的基因功能等方面有重要意义。近年来,基因编辑技术发展日新月异,从基于同源重组的传统基因编辑技术到以人工核酸酶介导的基因编辑均在谷氨酸棒杆菌中得到合理应用。其中,CRISPR技术以其快速、简便、编辑效率高等优点成为现阶段研究者用于改造谷氨酸棒杆菌的主要技术,但是更为简单、高效的编辑手段依旧需要进一步研究开发,以获得优良菌株应用于工业生产中。  相似文献   

10.
基于CRISPR/Cas的基因编辑是近年发展起来的一项变革性生物技术。其过程包括在目标DNA位点引入双链断裂(double strand break,DSB)以及其后续的细胞修复。细胞修复DSB主要有两种方式:非同源末端连接(non-homologous end joining,NHEJ)以及同源重组介导的修复(homology-directed repair,HDR)。前者是大多数细胞修复DSB的主要方式,其特点在于修复简单、效率高但极易出错,往往会引发难以预测的核苷酸插入或删除。点突变是自然界中最常见的遗传突变类型,引起了超过半数的人类遗传疾病以及许多重要农艺性状变异。碱基编辑能够实现单个碱基的替换,既不需要引入DSB,又无需修复模板参与,具有高效、编辑结果可控等优点,在基因治疗、作物育种及生物技术研究等方面具有重大的应用潜能。自首个碱基编辑工具开发以来,碱基编辑相关技术得到快速发展及广泛应用。本文综述了目前DNA碱基编辑研究进展,重点阐述了碱基编辑器及其在编辑效率、精度以及特异性提高和编辑范围扩展等方面的最新进展以及仍存在的瓶颈,并展望其研究和应用前景。  相似文献   

11.
    
The oleaginous yeast Yarrowia lipolytica has a tendency to use the non‐homologous end joining repair (NHEJ) over the homology directed recombination as double‐strand breaks (DSB) repair system, making it difficult to edit the genome using homologous recombination. A recently developed Target‐AID (activation‐induced cytidine deaminase) base editor, designed to recruit cytidine deaminase (CDA) to the target DNA locus via the CRISPR/Cas9 system, can directly induce C to T mutation without DSB and donor DNA. In this study, this system is adopted in Y. lipolytica for multiplex gene disruption. Target‐specific gRNA(s) and a fusion protein consisting of a nickase Cas9, pmCDA1, and uracil DNA glycosylase inhibitor are expressed from a single plasmid to disrupt target genes by introducing a stop codon via C to T mutation within the mutational window. Deletion of the KU70 gene involved in the NHEJ prevents the generation of indels by base excision repair following cytidine deamination, increasing the accuracy of genome editing. Using this Target‐AID system with optimized expression levels of the base editor, single gene disruption and simultaneous double gene disruption are achieved with the efficiencies up to 94% and 31%, respectively, demonstrating this base editing system as a convenient genome editing tool in Y. lipolytica.  相似文献   

12.
    
CRISPR/Cas9-guided cytidine deaminase enables C:G to T:A base editing in bacterial genome without introduction of lethal double-stranded DNA break, supplement of foreign DNA template, or dependence on inefficient homologous recombination. However, limited by genome-targeting scope, editing window, and base transition capability, the application of base editing in metabolic engineering has not been explored. Herein, four Cas9 variants accepting different protospacer adjacent motif (PAM) sequences were used to increase the genome-targeting scope of bacterial base editing. After a comprehensive evaluation, we demonstrated that PAM requirement of bacterial base editing can be relaxed from NGG to NG using the Cas9 variants, providing 3.9-fold more target loci for gene inactivation in Corynebacterium glutamicum. Truncated or extended guide RNAs were employed to expand the canonical 5-bp editing window to 7-bp. Bacterial adenine base editing was also achieved with Cas9 fused to adenosine deaminase. With these updates, base editing can serve as an enabling tool for fast metabolic engineering. To demonstrate its potential, base editing was used to deregulate feedback inhibition of aspartokinase via amino acid substitution for lysine overproduction. Finally, a user-friendly online tool named gBIG was provided for designing guide RNAs for base editing-mediated inactivation of given genes in any given sequenced genome ( www.ibiodesign.net/gBIG ).  相似文献   

13.
基于CRISPR/Cas系统出现的单碱基编辑技术可以实现高效且简便的单个碱基的替换编辑,其原理是将胞嘧啶脱氨酶(cytosine deaminase)或腺苷脱氨酶(adenosine deaminase)与Cas9n(D10A)形成融合蛋白,通过CRISPR/Cas精准识别和定位DNA上的靶位点后,利用胞嘧啶脱氨酶或腺苷脱氨酶将靶点距离sgRNA位点基序(protospacer adjacent motif,PAM)序列端的4~7位的单个碱基发生单碱基转换或颠换。对基于CRISPR/Cas系统的单碱基编辑技术发现的历史、组成和分类、工作原理进行了概述,并总结了该系统最新进展及应用。  相似文献   

14.
基于CRISPR/Cas系统出现的单碱基编辑技术可以实现高效且简便的单个碱基的替换编辑,其原理是将胞嘧啶脱氨酶(cytosine deaminase)或腺苷脱氨酶(adenosine deaminase)与Cas9n(D10A)形成融合蛋白,通过CRISPR/Cas精准识别和定位DNA上的靶位点后,利用胞嘧啶脱氨酶或腺苷脱氨酶将靶点距离sgRNA位点基序(protospacer adjacent motif,PAM)序列端的4~7位的单个碱基发生单碱基转换或颠换。对基于CRISPR/Cas系统的单碱基编辑技术发现的历史、组成和分类、工作原理进行了概述,并总结了该系统最新进展及应用。  相似文献   

15.
    
Targeted mutagenesis via genome‐editing technologies holds great promise in developing improved crop varieties to meet future demands. Point mutations or single nucleotide polymorphisms often determine important agronomic traits of crops. Genome‐editing‐based single‐base changes could generate elite trait variants in crop plants which help in accelerating crop improvement. Among the genome‐editing technologies, base editing has emerged as a novel and efficient genome‐editing approach which enables direct and irreversible conversion of one target base into another in a programmable manner. A base editor is a fusion of catalytically inactive CRISPR–Cas9 domain (Cas9 variants) and cytosine or adenosine deaminase domain that introduces desired point mutations in the target region enabling precise editing of genomes. In the present review, we have summarized the development of different base‐editing platforms. Then, we have focussed on the current advances and the potential applications of this precise technology in crop improvement. The review also sheds light on the limitations associated with this technology. Finally, the future perspectives of this emerging technology towards crop improvement have been highlighted.  相似文献   

16.
    
The base‐editing technique using CRISPR/nCas9 (Cas9 nickase) or dCas9 (deactivated Cas9) fused with cytidine deaminase is a powerful tool to create point mutations. In this study, a novel G. hirsutum‐Base Editor 3 (GhBE3) base‐editing system has been developed to create single‐base mutations in the allotetraploid genome of cotton (Gossypium hirsutum). A cytidine deaminase sequence (APOBEC) fused with nCas9 and uracil glycosylase inhibitor (UGI) was inserted into our CRISPR/Cas9 plasmid (pRGEB32‐GhU6.7). Three target sites were chosen for two target genes, GhCLA and GhPEBP, to test the efficiency and accuracy of GhBE3. The editing efficiency ranged from 26.67 to 57.78% at the three target sites. Targeted deep sequencing revealed that the C→T substitution efficiency within an ‘editing window’, approximately six‐nucleotide windows of ?17 to ?12 bp from the PAM sequence, was up to 18.63% of the total sequences. The 27 most likely off‐target sites predicted by CRISPR‐P and Cas‐OFFinder tools were analysed by targeted deep sequencing, and it was found that rare C→T substitutions (average < 0.1%) were detected in the editing windows of these sites. Furthermore, whole‐genome sequencing analyses on two GhCLA‐edited and one wild‐type plants with about 100× depth showed that no bona fide off‐target mutations were detectable from 1500 predicted potential off‐target sites across the genome. In addition, the edited bases were inherited to T1 progeny. These results demonstrate that GhBE3 has high specificity and accuracy for the generation of targeted point mutations in allotetraploid cotton.  相似文献   

17.
近年来,基于成簇的规律间隔短回文重复序列及其相关系统(Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein,CRISPR/Cas)的基因编辑技术飞速发展,该系统可以利用同源定向重组(Homology directed repair,HDR)来完成其介导的精准编辑,但效率极低,限制了其在农业和生物医学等领域上的推广应用。基于CRISPR/Cas系统的DNA碱基编辑技术作为一种新兴的基因组编辑技术,能在不产生双链断裂的情况下实现碱基的定向突变,相对于CRISPR/Cas介导的HDR编辑具有更高的编辑效率和特异性。目前,已开发出了可将C碱基突变为T碱基的胞嘧啶碱基编辑器(Cytidine base editors,CBE),将A碱基突变为G碱基的腺嘌呤碱基编辑器(Adenine base editors,ABE),以及可实现碱基任意变换和小片段精准插入和缺失的Prime编辑器(Prime editors,PE)。另外,能实现C到G颠换的糖基化酶碱基编辑器(Glycosylase base editors,GBE)以及能同时编辑A和C两种底物的双碱基编辑器也已被开发出来。文中主要综述了几种DNA碱基编辑器的开发历程、研究进展及各自优点和局限性;介绍了DNA碱基编辑技术在生物医学以及农业中的成功应用案例,以期为DNA碱基编辑器的进一步优化和选择应用提供借鉴。  相似文献   

18.
CRISPR/Cas9系统在疾病研究和治疗中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
基因组编辑技术(Genome editing technology)是一种通过人工手段在基因组水平对DNA序列进行改造的遗传操作技术,包括特定DNA片段的插入、敲除、替换和点突变.其中,依赖核酸酶的基因组编辑技术的基本原理是在基因组的特定位置产生双链DNA断裂(Double-stranded break,DSB)后通过...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号