首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
基因芯片技术检测细菌耐药性的研究进展   总被引:7,自引:1,他引:7  
基因芯片技术是将无数预先设计好的寡核苷酸、cDNA、基因组 (Genomic)DNA在芯片上做成点阵 ,与样品中同源核酸分子杂交 ,对样品的序列信息进行高效的解读和分析 ,大规模获取相关生物信息。该技术应用领域主要有表达谱分析、基因突变及多态性分析、疾病诊断和预测、DNA测序、药物筛选、检测筛选耐药基因、微生物菌种鉴定及致病机制研究等。着重介绍了基因芯片技术检测细菌耐药性方面的国外研究进展。基因芯片可以大量、快捷地检测出细菌耐药性菌株以及引起细菌耐药性的基因的突变 ,由于其在检测中的高效率 ,因此要优越于传统的细菌学检测技术。基因芯片技术在细菌耐药性检测中有着巨大的应用价值 ,具有广阔的应用前景。  相似文献   

2.
应用基因芯片技术检测非综合征型耳聋基因突变   总被引:3,自引:0,他引:3  
目的:应用遗传性耳聋基因芯片对散发性聋患者进行分子病因学检测,评估其在遗传性耳聋快速基因诊断中的可靠性。方法:门诊收集散发性聋患者10例,取外周血,提取基因组DNA,用遗传性耳聋基因芯片检测4个中国人中常见的耳聋相关基因中的9个热点突变,包括GJB2(35delG、176del16bp、235delC及299delAT)、GJB3(C538T)、SLC26A4(IVS7-2AG、A2168G)和线粒体DNA 12S rRNA(A1555G、C1494T)。同时,PCR扩增GJB2、线粒体12S rRNA基因全序列,DNA测序,以验证基因芯片检测结果的准确性。结果:在10名耳聋患者中,基因芯片方法检出1例携带线粒体DNA 12S rRNA C1494T突变;2例GJB2基因235delC纯合突变;2例235delC杂合突变;SLC26A4基因和GJB3基因未检出突变。基因芯片的结果与测序结果完全一致。结论:遗传性耳聋基因芯片技术对中国人常见耳聋相关基因热点突变的检出率高,结果准确、可靠,具有快速、高通量、高准确性、低成本等特点,能够满足临床耳聋基因检测的要求,同时结合产前诊断技术能有效预防耳聋患儿的出生,因而具有广阔的临床应用前景。  相似文献   

3.
基因芯片技术及其应用   总被引:3,自引:0,他引:3  
随着人类基因组计划的实施.能够对基因分子信息进行个别及大规模分析和检测的基因芯片技术得以诞生。由于其克服了传统核酸印迹杂交技术操作复杂、自动化程度低、检测效率低等缺点,得以飞速发展。现已在基因表达分析、DNA测序、多态性分析、基因诊断、药物筛选和药物开发、环境科学等领域得到了广泛的应用。  相似文献   

4.
基因芯片技术在检测肠道致病菌方面的应用   总被引:10,自引:0,他引:10  
基因芯片技术具有高通量、自动化、快速检测等特点,因此被广泛地应用于各种研究领域,如细菌分子流行病学、细菌基因鉴定、致病分子机理、基因突变及多态性分析、表达谱分析、DNA测序和药物筛选等。现介绍基因芯片检测肠道致病菌方面的国外研究进展,基因芯片应用于检测肠道致病菌的3个方面:结合多重PCR对致病菌的毒力因子或者特异性基因进行鉴定;直接检测细菌的DNA或者RNA;以致病细菌核糖体RNA作为检测的靶基因同时检测多种肠道致病菌。由于其检测的高效率,该技术要优于其他分子生物学检测方法。基因芯片技术在肠道致病菌检测中有着巨大的应用价值,具有广阔的应用前景。  相似文献   

5.
核酸检测技术因其快速、灵敏、特异、准确等优点,被广泛应用于细菌、真菌、病毒、寄生虫的快速检测和鉴定,以及疾病的早期筛查与诊断中。随着生物检测技术的发展,基于核酸的多重检测技术在核酸诊断领域发挥了越来越重要的作用,主要包括以多重PCR、核酸等温扩增、基因芯片为基础的多重核酸检测技术,这些技术可对多个靶标进行同时检测,具有快速、高通量、样品消耗少等特点。本文扼要介绍这些技术的原理,及其在病原检测、疾病诊断等方面的应用。  相似文献   

6.
基因芯片技术   总被引:18,自引:0,他引:18  
基因芯片技术是同时将大量的探针分子固定到固相支持物上,借助核酸分子杂交配对的特性对DNA样品的序列信息进行高效的解读和分析。它可用于基因表达谱的分析、突变检测、多态性分析、基因测序和基因组文库作图等研究工作,同时有人类疾病的检测、预防等方面也具有广阔的潜在应用价值,在未来的生命科学领域中必须发挥重要的作用。  相似文献   

7.
数字PCR(d PCR)是近年来引起重视并迅速发展起来的一种突破性的核酸定量分析技术。该技术先将核酸模板进行稀释,分配到大量独立的反应单元中,使每个反应单元中只有单个模板分子,然后进行PCR扩增反应,扩增结束后对每个反应室的荧光信号进行统计学分析,来定量DNA拷贝数。数字PCR采用先扩增后定量,因此不依赖扩增曲线的循环阈值(Ct),也无需采用内参基因和标准曲线,准确度高、重现性好,可以实现绝对定量分析。由于其独特的技术优势,已经在临床诊断、转基因成分定量、单细胞基因表达分析、环境微生物检测和下一代测序等研究领域显示出巨大的优势和应用前景。本文对数字PCR技术原理、定量分析方法、系统分类和应用等进行概述。  相似文献   

8.
滚环扩增(rollingcircleamplification,RCA)技术是一种新的分子生物学检测方法。该方法不仅可以在体外等温条件下对核酸进行高度特异性的检测,而且还可通过线性或指数扩增来进行信号级联放大,其灵敏度能达到1个拷贝的核酸分子,因此,可用于痕量分子的检测。目前,滚环扩增技术广泛应用于全基因组DNA检测、核酸测序、单核苷酸多态性、DNA芯片及蛋白质芯片分析等领域。  相似文献   

9.
基因芯片又称为DNA微阵列,是指将大量核酸片段以预先设计的方式固定在载体上组成密集分子阵列,与荧光素或其他方式标记的样品进行杂交,通过检测杂交信号的强弱来判断样品中有无靶分子以及对靶分子进行定量,是一种研究生物大分子功能的新技术。在衣原体研究方面,基因芯片主要应用于衣原体的检测与分型、感染机制的研究、特定基因作用分析、毒力及耐药基因的筛选等。  相似文献   

10.
基于聚合酶链式反应(polymerase chain reaction,PCR)的核酸扩增技术是分子诊断领域的金标准,然而PCR往往包含多个反应温度,涉及长时间的循环升降温过程,且需要在复杂热循环仪中完成,这些都限制了其在现场即时检测(point-of-care testing,POCT)中的应用。与传统PCR相比,等温扩增依靠恒定反应温度,反应时间短,检测装置简单,能够提供更加方便、快捷的核酸检测。基于微流控技术的等温扩增检测,通过兼顾微流控与等温扩增两者的优势,能够为POCT分子诊断提供更具竞争力的平台。例如,在新型冠状病毒肺炎(COVID-19)疫情防控中,多种形式的POCT等温扩增检测展示了其独特优势。文中首先归纳总结了典型的等温扩增技术及其检测方法,然后对不同类型的等温扩增微流控系统进行了分类总结与分析(如功能定位、结构组成、流体控制、系统特点等),最后总结了等温扩增微流控系统在新冠病毒(SARS-CoV-2)等不同病原体检测领域中的应用,并对等温扩增与CRISPR基因编辑等其他新型技术的相互结合进行了介绍与展望。  相似文献   

11.
基因芯片技术及其应用研究   总被引:3,自引:0,他引:3  
基因芯片技术是建立在杂交序列基本理论上的分子生物学技术,具有高度平行性、多样性、微型性和自动化的特点。由于其克服了传统核酸印迹杂交技术操作复杂、自动化程度低、检测效率低等缺点得以飞速发展,目前,该技术已用于DNA测序、基因表达分析、新基因的发现、基因单核苷酸多态性(SNPs)研究、基因诊断、药物筛选等领域。  相似文献   

12.
13.
目的对比研究免疫组织化学(IHC)与荧光原位杂交(FISH)方法检测乳腺癌中C-erbB-2蛋白表达和HER2基因扩增,评估两种方法的实际应用价值。方法 IHC和FISH法分别检测58例乳腺癌组织中C-erbB-2蛋白表达和HER2基因扩增状况,并进行一致性分析。结果IHC检测蛋白阳性2+和3+共22例,占总病例的37.9%,58例乳腺癌中FISH检测出HER2基因扩增17例,占29.3%。IHC检测C-erbB-2蛋白3+的12例中11例HER2基因扩增阳性,1例无扩增;C-erbB-2蛋白2+者10例,其中5例可见HER2基因扩增;C-erbB-2蛋白1+者11例HER2基因扩增仅1例。C-erbB-2蛋白阴性病例共25例均未检测到基因扩增。结果显示IHC检测C-erbB-2蛋白与FISH检测HER2基因扩增状态有较高的一致性(k=0.681,P0.01),C-erbB-2蛋白阴性和3+标本与HER2基因扩增阳性率比较差异无统计学意义(P0.05);而C-erbB-2蛋白1+和2+病例与其HER2基因扩增差异具有统计学意义(P0.05)。结果 IHC检测C-erbB-2蛋白强阳性(3+)和阴性(0)与HER2基因扩增有较高的一致性,可作为临床是否应用Herceptin治疗的依据,而C-erbB-2蛋白2+和1+病例必须进一步行HER2基因扩增检测。  相似文献   

14.
应用RD-PCR技术分离SH-SY5Y细胞的基因片段。从正常培养的SH-SY5Y细胞中提取总RNA,经oligo(dT)纤维素柱纯化分离出mRNA,然后以oligo(dT18)为锚定引物反转录生成单链cDNA,再以此为模板合成DNA的第二条链;将双链DNA经Sau3AI酶切之后,接上接头,经通用引物和选择性引物进行扩增;然后与载体pMD18-T相连,克隆鉴定、筛选、测序。所分离的cDNA片段经过扩增后用于制备基因芯片的靶基因,杂交检测的结果表明,此种方法所分离的基因片段可以用于基因芯片的靶基因片段,所制备的芯片将为进一步研究神经细胞基因表达提供了条件。  相似文献   

15.
转基因植物核酸成分检测技术研究进展   总被引:6,自引:0,他引:6  
首先对转基因核酸成分检测的靶序列特征进行了阐述,对转基因植物核酸成分的定性、定量检测技术研究进展进行了综述,包括基于PCR的检测技术、基于等温核酸扩增的检测技术、基因芯片检测技术、基于高通量测序和新型转基因核酸检测技术(如生物传感器技术、毛细管电泳技术和纳米刻度技术等),重点介绍了各种检测技术的原理、特点、研究现状和发展动态,并对各种方法的优缺点进行了比较。  相似文献   

16.
目录一、前言二、基因组学的产生、发展及研究方法的演进三、基因芯片技术四、新一代基因测序技术(一)新一代测序技术的技术对比(二)单分子测序技术的基本原理(三)单分子测序技术所面临的挑战五、单分子测序技术的应用(一)在基因组学和系统生物学研究领域的应用(二)在基因表达图谱和单核苷酸多态性等研究领域的应用(三)在个体医学领域的应用六、结语  相似文献   

17.
目的比较分析乳腺浸润癌患者中HER-2蛋白表达与基因扩增的差异性和相关性。方法利用免疫组织化学(IHC)与荧光原位杂交(FISH)技术分别检测乳腺浸润癌患者HER-2蛋白表达和基因扩增情况,并对结果进行相关性分析。结果乳腺浸润癌中HER-2蛋白表达及基因扩增结果具有较好的一致性,总体一致率为91%,IHC结果(+++)中二者结果一致率最高,结果(++)中二者结果一致率最低。结论 FISH与IHC两项技术在检测HER-2基因扩增及蛋白表达方面具有较好的一致性。乳腺癌患者应常规进行HER-2的IHC检查,当IHC阳性结果不明确时需进一步行FISH检测HER-2基因的扩增情况,从而为临床综合治疗方案提供更可靠的依据。  相似文献   

18.
环介导等温扩增技术(LAMP)是一种新型分子诊断技术,具有灵敏度高、反应快速等优点,且仅利用简单的恒温水浴设备即可实现对特异性靶基因的高效扩增,在分子诊断领域具有巨大潜力。近几年来LAMP技术在分子诊断领域的研究非常广泛,涉及细菌、病毒、寄生虫的检测及食品转基因成分检验等诸多方面,受到越来越多学者认可,有研究者认为其可作为PCR的替补技术应用于临床基因诊断工作中。然而由于目前该技术缺乏规范化且成熟配套的上下游技术措施,如快速简单的核酸抽提技术、完善的应用体系和方案、防止交叉污染的有效措施及小型便携的检测设备等,因此在现场即时诊断领域的推广应用较为缓慢。为发挥利用LAMP技术在快速基因诊断方面的优越性,科研人员针对LAMP技术开发应用存在的问题开展了大量研究工作。立足于临床基因快速诊断的技术需求,对影响LAMP技术应用的核酸物质的快速抽提、LAMP检测体系的优化完善、结果判定、假阳性结果的规避、结果确诊及现场诊断一体化平台设计应用等领域的发展现状、需要攻克的难点及未来的应用展望进行综述,以期为未来的研究和开发指明方向,促进LAMP技术的不断完善及临床推广应用。  相似文献   

19.
FISH在人类未受精卵染色体异常分析中的应用   总被引:1,自引:1,他引:1  
分子细胞遗传学的主要技术代表———荧光原位杂交 (FISH)是用荧光标记的依靠探针杂交原理在细胞核中或染色体上显示某一特定核酸序列的位置 ,并可进行相对定量分析 .它广泛应用于遗传病的诊断、产前诊断、肿瘤遗传学、进化遗传学研究和基因定位等领域 ,随着辅助生殖技术的进展 ,将在植入前胚胎遗传学诊断 (PGD)、生殖细胞 (卵母细胞和精子 )染色体异常的研究方面发挥更大的用途 .它是联系分子遗传学和细胞遗传学之间的桥梁 .  相似文献   

20.
以完整细胞为靶子的SELEX技术研究进展   总被引:2,自引:0,他引:2  
指数富集的配体系统进化(SELEX)是一种从大容量寡核苷酸文库中经反复分离扩增步骤得到针对靶分子的高亲和力、高特异性核酸配基——适配体的体外筛选技术。自1990年以来,SELEX技术得到了迅猛发展,筛选的靶分子已由最初的单一物质发展到完整的动物细胞、细菌病原体等复杂靶子。以完整细胞为靶子的SELEX技术有其独特的技术优势,可以在筛选细胞上特定靶分子未知的情况下进行筛选,为药物筛选、临床诊断、疾病治疗和基础医学研究等带来了新的思路和方法。随着对适配体研究的深入,尤其是纳米材料与其相结合应用,该技术将在肿瘤诊断治疗及微生物检测领域具有更为广泛的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号