首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
简要介绍微生物产多不饱和脂肪酸的生化研究现状,着重从高产菌株的筛选、工程菌株的构建、发酵条件及产业化现状等方面论述微生物发酵生产多不饱和脂肪酸的主要研究进展;概述多不饱和脂肪酸的提取制备技术,并对发酵法生产多不饱和脂肪酸研究目标和发展前景提出了建议.  相似文献   

2.
丁酸梭菌(Clostridium butyricum)是一种专性厌氧菌,可通过多基因过表达、同源重组、基于非复制型质粒和非复制型质粒的同源重组等多种遗传操作方式对其进行改造。丁酸是丁酸梭菌发酵的产物之一,丁酸用途广泛,用于饲料添加剂,可提高动物抵抗力,减少抗生素的使用。用丁酸梭菌发酵产丁酸,其产量仍然较低,不利于工业化生产,有必要通过代谢工程对丁酸梭菌产丁酸的途径进行优化。对丁酸梭菌的主要代谢途径、遗传操作体系及丁酸合成途径的优化等研究进展进行了综述。在此基础上,对丁酸梭菌进一步改造的思路和想法进行了展望。  相似文献   

3.
酪丁酸梭菌Clostridium tyrobutyricum可以利用葡萄糖、木糖、纤维二糖、阿拉伯糖等多种底物进行产酸发酵,主要发酵产物为丁酸和乙酸,是一种适合于木质纤维素同步糖化发酵生产丁酸的菌种。将酪丁酸梭菌乙酸发酵关键基因取代为丁酸发酵关键基因来构建突变株,可使突变株丁酸发酵量增多,乙酸发酵量减少。分别获得来源于丙酮丁醇梭菌的丁酸代谢关键酶基因——乙酰乙酰辅酶A转移酶基因(thl)、来源于酪丁酸梭菌本身的乙酸代谢关键酶基因片段——磷酸转乙酰基酶基因片段(pta)和来源于质粒pIMP1的红霉素抗性基因(em)。将它们与质粒pUC19相连构建为非复制性质粒pUC19-EPT。通过电转化将其导入酪丁酸梭菌中。利用红霉素抗性平板筛选获得转化子,通过PCR验证发现,获得的突变株染色体上pta被thl替换。在以葡萄糖为底物的发酵中,突变株丁酸得率为0.47,较野生型增大了34%,乙酸得率为0.05,较野生型下降了29%。  相似文献   

4.
发展可再生能源,尤其是生物能源,具有显著的能量收益和碳减排效益。随着石油等不可再生资源的减少,许多大宗传统石油化工产品正不断被使用可再生原料的生物制造产品替代。生物发酵法生产1,3-丙二醇(1,3-PDO)顺应了这一潮流,具有广阔的发展前景。提高微生物发酵竞争力,优化发酵法生产1,3-PDO水平,势必增加1,3-PDO的生产效益。对肺炎克雷伯氏菌(Klebsiella pneumoniae)发酵法进行1,3-PDO生产的代谢机理、菌株筛选和利用、发酵参数的选择和优化以及发酵工程策略的设计和监测等进行综述,为利用生物柴油副产物甘油生产有重要工业价值的1,3-PDO产品提供参考。  相似文献   

5.
肠道内产丁酸细菌及其产物丁酸生理功能的研究进展   总被引:2,自引:0,他引:2  
产丁酸细菌是利用糖类发酵产生丁酸的一类细菌,代表种是丁酸梭菌。在动物及人类肠道内存在的产丁酸细菌主要是梭菌属、柔嫩梭菌属、罗斯式菌属、真菌属及丁酸弧菌属。本文一方面介绍部分肠道内产丁酸细菌的种类、特点及膳食纤维的摄入和肠道益生菌对产丁酸细菌的影响,另一方面对其主要代谢产物丁酸在体内的生理功能进行探讨,以期为产丁酸细菌的应用及产品开发提供理论依据。  相似文献   

6.
生物发酵产丁醇研究进展   总被引:2,自引:0,他引:2  
丁醇作为新一代生物燃料,已成为世界研究的热点。利用可再生原料通过微生物发酵生产丁醇受到人们的普遍关注。目前通过发酵法产丁醇的成本较石化途径高。降低丁醇的生产成本,可以从以下几个方面入手:使用廉价的非粮食原料,开发新的高产低能耗发酵工艺,选育高产丁醇菌株。相信在不久的将来,研究者们将研发出高经济竞争力和可持续发展的丁醇生产工艺。  相似文献   

7.
洋河酒窖泥细菌群落结构与菌株产酸能力分析   总被引:3,自引:3,他引:0  
【背景】窖泥微生物的种类及其代谢产物类型是影响浓香型白酒发酵过程中丁酸和己酸等白酒中主要有机酸合成的影响因素之一。【目的】揭示浓香型白酒不同窖龄窖泥细菌群落结构,研究厌氧细菌产酸性能,阐明窖泥细菌与白酒中有机酸合成的相关性。【方法】通过Illumina HiSeq高通量测序,基于16S rRNA基因序列分析不同窖龄窖泥细菌的组成。分离获得厌氧细菌,通过比较菌株产丁酸和己酸能力来分析窖泥的微生物代谢特性。【结果】洋河酒窖泥细菌主要分布于梭菌纲(Clostridia)、拟杆菌纲(Bacteroidia)、互营养菌纲(Synergistia)和芽孢杆菌纲(Bacilli)。20年窖龄的窖泥中氢孢菌属(Hydrogenispora)和瘤胃梭菌属(Ruminiclostridium)丰度显著增加。窖泥细菌间相关性分析表明,瘤胃梭菌属(Ruminiclostridium)为窖泥中影响最大的核心微生物,很多微生物与梭菌属(Clostridium)菌株之间多为相互促进关系。通过传统可培养方法共分离得到梭菌目(Clostridiales)的20株厌氧菌。其中梭菌属(Clostridium)菌株产酸能力高于其他菌属,酪丁酸梭菌(Clostridium tyrobutyricum)和丁酸梭菌(Clostridium butyricum)产丁酸和己酸的能力最强。产丁酸能力最高的菌主要分离自5年和20年窖龄窖泥,产己酸能力最高的菌分离自20年窖龄窖泥。【结论】解析了浓香型白酒不同窖龄窖泥的细菌组成,并对菌株产丁酸和己酸的能力进行了比较,为揭示窖泥微生物功能及其对白酒风味物质合成的影响奠定了相关的研究基础。  相似文献   

8.
粗甘油是生物柴油工业生产中的主要副产物,通过微生物发酵直接将其转化成高值化学品1,3-丙二醇,是其绿色高值化利用的有效途径。对微生物代谢甘油产1,3-丙二醇途径及关键酶、粗甘油杂质对微生物发酵影响、不同微生物直接发酵粗甘油生产1,3-丙二醇以及混菌发酵粗甘油提高1,3-丙二醇产率等方面的最新研究进展进行了综述,旨在为直接发酵粗甘油生产1,3-丙二醇的工程菌株开发及其工业化应用提供参考。  相似文献   

9.
丁酸传统上可用于制造丁酸纤维素、合成丁酸酯、食品香料等,近年来研究发现丁酸是肠道上皮细胞的优选能量来源,能抑制组蛋白去乙酰化酶,具有抗癌作用.随着丁酸在生物相关领域功用的不断发现和实际应用,而消费者又日趋青睐生物源制品,微生物催化生产丁酸将越来越具有竞争力.产物浓度低、选择性差是当前丁酸发酵的主要限制因素.许多研究从选用廉价培养基料、优化发酵工艺、简化提取步骤、遗传改造生产菌株等方面来提高生产效率、降低成本,并取得一定进展.今后这些方面更多的突破,都将使微生物催化生产丁酸的产业化成为可能.  相似文献   

10.
微生物发酵产光学纯度D-乳酸研究进展   总被引:2,自引:0,他引:2  
D-乳酸作为一种重要的手性中间体和聚乳酸合成的原料,其生产已越来越受到人们的重视。然而,低光学纯度D-乳酸在很多领域的应用都受到限制。微生物发酵法能够生产高光学纯度的D-乳酸。除了乳酸生产的传统菌株-乳酸细菌,研究者们还通过基因工程的手段不断探索其它种属菌株利用更廉价的可再生资源高产光学纯度D-乳酸的可行性。介绍了D-乳酸的物化性质及其在工业生产、化学加工和聚乳酸合成中的应用,并详细综述了国内外发酵法生产光学纯度D-乳酸的最新研究进展,着重介绍了采用基因工程育种策略提高菌株的D-乳酸产量、转化率、生产强度以及光学纯度,降低副产物的合成,扩大底物利用范围的研究成果。所涉及的菌株包括:乳酸细菌、大肠杆菌、谷氨酸棒杆菌以及酵母等。这些研究表明,应用基因工程手段改造生产菌株的代谢途径是选育D-乳酸发酵生产菌株的发展趋势。最后还对D-乳酸发酵生产的前景进行了展望。  相似文献   

11.
工业乳酸发酵的近期进展   总被引:12,自引:1,他引:11  
乳酸是一种重要的多用途有机酸。通过菌种改良和发酵工艺技术的改进,可以大大提升微生物发酵技术水平,降低成本。简要综述有关的研究进展。  相似文献   

12.
Production of succinic acid via separate enzymatic hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) are alternatives and are environmentally friendly processes. These processes have attained considerable positions in the industry with their own share of challenges and problems. The high-value succinic acid is extensively used in chemical, food, pharmaceutical, leather and textile industries and can be efficiently produced via several methods. Previously, succinic acid production via chemical synthesis from petrochemical or refined sugar has been the focus of interest of most reviewers. However, these expensive substrates have been recently replaced by alternative sustainable raw materials such as lignocellulosic biomass, which is cheap and abundantly available. Thus, this review focuses on succinic acid production utilizing lignocellulosic material as a potential substrate for SSF and SHF. SSF is an economical single-step process which can be a substitute for SHF — a two-step process where biomass is hydrolyzed in the first step and fermented in the second step. SSF of lignocellulosic biomass under optimum temperature and pH conditions results in the controlled release of sugar and simultaneous conversion into succinic acid by specific microorganisms, reducing reaction time and costs and increasing productivity. In addition, main process parameters which influence SHF and SSF processes such as batch and fed-batch fermentation conditions using different microbial strains are discussed in detail.  相似文献   

13.
Several issues of butyric acid production with bacteria through fermentation are presented in this review. The current progress including the utilization of butyric acid, the production strains, the metabolic pathway, and regulation are presented in the paper. Process operation modes such as batch, fed-batch, and continuous fermentation are being discussed. Genetic engineering technologies for microbial strain improvement are also being discussed and fermentation systems have been recommended.  相似文献   

14.
长链二元酸作为合成多种高附加值化学品的原料,已广泛应用于化工、农业和医药等领域,目前全球对于长链二元酸的需求呈逐年增长态势。化学法合成长链二元酸对反应条件要求严苛且工艺复杂,而微生物发酵合成在经济性和难易度等方面具有无可比拟的优势。本文综述了长链二元酸的合成方法,包括化学合成法和微生物发酵法,分子工程选育高产菌株的进展以及生物发酵法生产长链二元酸的产业化现状,并就其存在的问题进行了探讨,最后对合成生物学创制长链二元酸高产菌株进行了总结和展望。  相似文献   

15.
Butyric acid (C3H7COOH) is an important chemical that is widely used in foodstuffs along with in the chemical and pharmaceutical industries. The bioproduction of butyric acid through large-scale fermentation has the potential to be more economical and efficient than petrochemical synthesis. In this paper, the metabolic pathways involved in the production of butyric acid from Clostridium tyrobutyricum using hexose and pentose as substrates are investigated, and approaches to enhance butyric acid production through genetic modification are discussed. Finally, bioreactor modifications (including fibrous bed bioreactor, inner disk-shaped matrix bioreactor, fibrous matrix packed in porous levitated sphere carriers), low-cost feedstocks, and special treatments (including continuous fermentation with cell recycling, extractive fermentation with solvent, using different artificial electron carriers) intended to improve the feasibility of commercial butyric acid bioproduction are summarized.  相似文献   

16.
活性污泥产酸发酵研究进展   总被引:1,自引:0,他引:1  
有机物的厌氧生物处理一般经过三个阶段:水解阶段、产酸发酵阶段和产甲烷阶段;研究证明,产酸相不同发酵类型的形成对产甲烷相乃至整个工艺的稳定运行具有至关重要的作用,此外,污泥厌氧消化过程所产生的大量的挥发性脂肪酸(VFAs),如乙酸、丙酸、丁酸及戊酸等,还可作为化工原料用于发酵工业生产各种高附加值产品.近年来,产酸发酵受到越来越多的关注,该文主要对污泥产酸阶段的产酸发酵类型、产酸发酵细菌的生态学、产酸过程的影响因素和生态因子以及产酸发酵的液相末端产物VFAs的测定方法进行了论述.  相似文献   

17.
β-Alanine is an important β-amino acid with a growing demand in a wide range of applications in chemical and food industries. However, current industrial production of β-alanine relies on chemical synthesis, which usually involves harmful raw materials and harsh production conditions. Thus, there has been increasing demand for more sustainable, yet efficient production process of β-alanine. In this study, we constructed Corynebacterium glutamicum strains for the highly efficient production of β-alanine through systems metabolic engineering. First, aspartate 1-decarboxylases (ADCs) from seven different bacteria were screened, and the Bacillus subtilis ADC showing the most efficient β-alanine biosynthesis was used to construct a β-alanine-producing base strain. Next, genome-scale metabolic simulations were conducted to optimize multiple metabolic pathways in the base strain, including phosphotransferase system (PTS)-independent glucose uptake system and the biosynthesis of key precursors, including oxaloacetate and L-aspartate. TCA cycle was further engineered for the streamlined supply of key precursors. Finally, a putative β-alanine exporter was newly identified, and its overexpression further improved the β-alanine production. Fed-batch fermentation of the final engineered strain BAL10 (pBA2_tr18) produced 166.6 g/L of β-alanine with the yield and productivity of 0.28 g/g glucose and 1.74 g/L/h, respectively. To our knowledge, this production performance corresponds to the highest titer, yield and productivity reported to date for the microbial fermentation.  相似文献   

18.
1,3-丙二醇(1,3-PD)是一种重要的化工原料,广泛应用于医药、化工、食品及化妆品等行业,同时1,3-PD是合成聚对苯二甲酸丙二酯(PTT)的重要单体,市场需求量逐年增多。基于生态友好型、生产安全和可持续发展的要求,利用微生物转化可再生资源来生产1,3-PD受到了人们的广泛重视。综述了微生物发酵法生产1,3-PD的菌株、代谢途径、发酵和下游分离工艺及其新进展,并对工业生产中利用生物技术生产1,3-PD的未来前景和挑战进行了探讨。  相似文献   

19.
γ-氨基丁酸(γ-aminobutyric acid,GABA)是一种极易溶于水的非蛋白质氨基酸,被广泛应用于食品和制药工业中,市场需求量极大。可通过化学合成法、植物富集法、微生物直接发酵法和生物转化法生产。近年来,因生物法合成GABA具有相对优势,受到研究者们的重视。对GABA的生产方法、生产GABA的微生物、微生物合成GABA的关键代谢途径和GAD酶的定向改造策略进行了论述。  相似文献   

20.
Huang J  Cai J  Wang J  Zhu X  Huang L  Yang ST  Xu Z 《Bioresource technology》2011,102(4):3923-3926
Butyric acid is an important specialty chemical with wide industrial applications. The feasible large-scale fermentation for the economical production of butyric acid requires low-cost substrate and efficient process. In the present study, butyric acid production by immobilized Clostridium tyrobutyricum was successfully performed in a fibrous-bed bioreactor using Jerusalem artichoke as the substrate. Repeated-batch fermentation was carried out to produce butyric acid with a high butyrate yield (0.44 g/g), high productivity (2.75 g/L/h) and a butyrate concentration of 27.5 g/L. Furthermore, fed-batch fermentation using sulfuric acid pretreated Jerusalem artichoke hydrolysate resulted in a high butyric acid concentration of 60.4 g/L, with the yield of 0.38 g/g and the selectivity of ∼85.1 (85.1 g butyric acid/g acetic acid). Thus, the production of butyric acid from Jerusalem artichoke on a commercial scale could be achieved based on the system developed in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号