首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 107 毫秒
1.
棕背伯劳羽色多态现象探讨   总被引:6,自引:0,他引:6  
羽色多态现象的研究对了解物种的遗传、变异和进化有着重要意义。棕背伯劳(Lanius schach)具有典型的羽色多态现象。结合华南濒危动物研究所馆藏标本和2005年4月—2007年1月间的野外调查,分析棕背伯劳棕色型和黑色型在形态和地理分布上的差异性后,得到的结果如下:1)广东可能存在与棕色型、黑色型相区别的一种新色型——黑色白边型,该色型全身以黑色为主,但具多枚白色飞羽;2)棕色型与黑色型各身体量度均无显著性差异(P>0.05);3)野外种群中棕色型为优势色型,黑色型多集中于沿海地区而山区未有发现,黑色白边型仅在沿海的海丰县被发现。据此认为新色型的出现说明沿海可能是黑色型分化的重要地区,且色型的分化仍在进行中。  相似文献   

2.
不同色型棕背伯劳的冬季家域对比研究   总被引:2,自引:0,他引:2  
棕背伯劳Lanius schach具有典型的羽色多态现象.于2008年11月14日至12月24日,采用野外直接观察法,利用GPS存取地理坐标点信息,对广东海丰鸟类自然保护区公平保护站黑、棕两种色型棕背伯劳家域进行对比研究,所得数据利用Arcview3.2和SPSS13.0软件技术分析,以探讨不同色型间在家域行为的差异.结果表明:(1)黑、棕两种色型棕背伯劳家域的平均面积分别为11270.96 m2±1807.72 m2、13425.83 m2±3038.82 m2,两者之间无显著差异(P>0.05);(2)被调查个体的家域形状均不规则,相邻家域间的重叠幅度均<1%;(3)不同色型棕背伯劳日平均活动时间区间和时间长度无显著差异(P>0.05).据此认为,棕背伯劳两种色型在家域行为上未表现出明显的分化.  相似文献   

3.
羽色多态现象的研究对了解物种的遗传、变异和进化有着重要意义。棕背伯劳(Lanius schach)具有典型的羽色多态现象。结合华南濒危动物研究所馆藏标本和2005年4月—2007年1月间的野外调查,分析棕背伯劳棕色型和黑色型在形态和地理分布上的差异性后,得到的结果如下:1) 广东可能存在与棕色型、黑色型相区别的一种新色型——黑色白边型,该色型全身以黑色为主,但具多枚白色飞羽;2) 棕色型与黑色型各身体量度均无显著性差异(P> 0.05);3) 野外种群中棕色型为优势色型,黑色型多集中于沿海地区而山区未有发现,黑色白边型仅在沿海的海丰县被发现。据此认为新色型的出现说明沿海可能是黑色型分化的重要地区,且色型的分化仍在进行中。  相似文献   

4.
棕背伯劳两种色型繁殖特征的比较   总被引:3,自引:0,他引:3  
棕背伯劳(Lanius schach)具羽色多态现象,其中黑色型是否为独立种曾存在着争议。为此,于2008年2—6月在广东海丰地区对两色型(棕色型和黑色型)的繁殖生态进行对比研究,以探讨黑色型的分类地位。结果表明:1) 两色型伯劳窝卵数、卵的度量值及发育上皆无显著差异(P>0.05);2) 两色型雏鸟在15日龄前的体长、翼长及体重等生长曲线均符合Logistic方程,除尾长渐进值参数呈显著差异(P<0.05)外,其他均无显著性差异(P>0.05);3) 据14日龄的雏鸟测量值表明,两色型在身体外部器官各项生长量度均无显著性差异(P>0.05);4) 易卵易雏实验表明,在孵卵和育雏过程中,两种色型棕背伯劳亲鸟之间皆可相互接受对方同一时期的卵和雏鸟,但不接受对方的异期卵;5)易雏后亲子和义子索食、站立、理羽、休息等行为差异不明显。因此认为黑伯劳只是棕背伯劳的一个色型而非独立种。  相似文献   

5.
云南省发现白化棕背伯劳   总被引:6,自引:1,他引:5  
2005年9月笔者在昆明巫家坝国际机场驱赶机场害鸟时,采集到一白化伯劳标本,经鉴定为棕背伯劳Lanius schach(雀形目Passeriformes,伯劳科Laniidae).标本保存于云南大学生命科学学院动物标本室.描述如下:  相似文献   

6.
四川南充地区棕背伯劳繁殖期鸣声的初步研究   总被引:1,自引:0,他引:1  
2008年3~8月,对四川南充地区棕背伯劳繁殖期鸣声进行了初步的研究.研究期间共记录到430次棕背伯劳的鸣声.根据对其行为和鸣声波谱图、语谱图特点的分析,繁殖期棕背伯劳的鸣声可分为:占区、驱逐、求偶、幼鸟乞食、召唤和应答6种叫声,对棕背伯劳繁殖期鸣声的特点进行了分析讨论.  相似文献   

7.
2008 年2-6 月, 在广东海丰鸟类自然保护区对棕背伯劳棕色型(normal morph)、黑色型(dark morph)及其不同杂交型的巢址选择及巢的生态测量值进行了比较。结果如下: 1)野外观察发现棕背伯劳不同色型间未有生殖隔离; 2)对59巢15 个巢址因子进行主成分分析表明, 巢址选择均主要受5 个主成分的影响(5 个主成分中, 相对系数绝对值最高的变量依次是: 巢位高、水源距离、巢下方郁闭度、巢枝分叉级数和巢树隐蔽度), 累计贡献率达70.18%。三种交配型(黑色型-黑色型, 黑色型-棕色型和棕色型-棕色型)巢址选择的主要影响因子皆无显著性差异(P > 0.05)。3)不同交配型在巢材选择上取材均较为广泛, 但差异不显著, 巢的生态测量值亦无显著差异(P > 0.05)。结论认为, 棕背伯劳不同色型在巢址生态位尺度上未出现明显分化。  相似文献   

8.
四川南充地区棕背伯劳的繁殖习性   总被引:1,自引:0,他引:1  
2005年3~6月在四川省南充市区及近郊对棕背伯劳(Lanius schach)的繁殖习性进行了研究。结果表明,棕背伯劳2月中下旬开始繁殖,雌雄参与筑巢,多筑巢于庄稼地或菜地边缘区域的高大乔木上。对20巢共13个巢址因子主成分分析表明,影响巢址选择的主要因素有4个,累积贡献率达82.38%,其中巢位与光照因子贡献率最高,达33.47%。棕背伯劳的产卵期、孵化期及育雏期分别为5~7 d、12~14d1、4~16 d,育雏期亲鸟的喂食模式有3种。雌鸟在育雏期的暖雏高峰主要出现在8:00~9:00和16:00~17:00时。  相似文献   

9.
棕背伯劳的生态观察   总被引:5,自引:1,他引:5  
本文作者于1980—1987年,在江苏省的扬州地区,对棕背伯劳的生态进行了初步观察。其内容包括栖息地,种群数量统计,棕背伯劳全年食性的初步分析。及棕背伯劳在苏北南部每年3—7月为繁殖期,每年繁殖1—2次,每窠产卵4—8枚,多数6枚,孵卵雌鸟为主,雄鸟守卫在巢区附近的丛林中。如在孵卵期中巢被毁,棕背伯劳尚能应用旧巢材,重建新巢,补产卵一窠。孵卵期约为12—14天。  相似文献   

10.
豚鼠Cavia porcellus的隐性黄毛色表型是由编码黑素皮质激素受体1(MC1R)的extension基因座位的等位基因e控制。本研究对野生型和黄毛色豚鼠MC1R基因位点所在区域进行PCR扩增与测序发现,在黄毛色豚鼠中存在1个2 760 bp的基因组缺失,该缺失涵盖了MC1R基因的整个编码区。采用三引物扩增体系对豚鼠MC1R基因缺失突变进行群体基因分型,在随机选择的58只野生型个体中,36只为EE纯合子,22只为Ee杂合子,而31只黄毛色个体均为ee纯合子;在15只测交后代中,8只黄毛色个体均为ee纯合子,而7只野生型个体均为Ee杂合子。基因分型结果表明,MC1R基因2 760 bp的缺失与隐性黄毛色完全相关。本研究为进一步探究MC1R基因在哺乳动物毛色遗传机制中的作用以及豚鼠的分子标记辅助育种提供了理论依据。  相似文献   

11.
李世鹏  杜智恒  宁方勇  孙洪霞  白秀娟 《遗传》2008,30(10):1333-1340
利用PCR-SSCP技术和DNA测序方法检测广东石岐肉鸽和哈尔滨地区灰色家鸽MC3R和MC4R基因部分编码区序列的单核苷酸多态性, 分析了MC3R基因T91G突变位点和MC4R基因A903G突变位点导致的基因型与两群体鸽生长和体组成性状的关系。结果表明, 这两个多态位点所导致的基因型对石岐肉鸽活重、屠体重、全净膛重均有显著影响(P<0.05); 另外, 利用这两个突变位点所产生的合并基因型在鸽群体中与生长和体组成性状作最小二乘分析, 结果表明, 两位点合并后的基因型对全净膛重影响显著(P<0.05)。多重比较结果表明, BBAA型全净膛重显著大于AABB型, BBAA型对于体重增长是有利基因型。  相似文献   

12.
棕背伯劳的雏鸟生长和出飞后行为发育的初步观察   总被引:3,自引:0,他引:3  
2005年3-5月对南充地区棕背伯劳(Lanius schach)雏鸟的生长进行了观察和测量,并对出飞之后的行为发育进行了初步研究。结果表明,棕背伯劳育雏期12~13d,观察21雏成活18只,成活率为85.7%。体重、体长和其他形态特征的生长都适用于Logistic方程拟合。出飞后笼养雏鸟的“理翅羽”和“一侧翅下展,同时同侧脚下伸”行为频率最高,分别为18.81%和11.88%。  相似文献   

13.
A single nucleotide polymorphism (MC1R: c.376A>G) in the MC1R gene was found to be highly correlated with pigment phenotype in the Gyrfalcon. Homozygous genotypes c.376GG and c.376AA were found to dominate the extreme white and dark plumage types respectively, and heterozygotes occurred mainly in intermediate phenotypes. However, some heterozygotes were associated with extreme phenotypes, indicating that melanism/albinism might also involve other loci.  相似文献   

14.
Melanocortin-1 receptor (MC1R) plays a major role in pigmentation in many species. To investigate if the MC1R gene is associated with coat color in water buffalo, the coding region of MC1R gene of 216 buffalo samples was sequenced, which included 49 black river buffalo (Murrah and Nili-Ravi), 136 swamp buffalo (Dehong, Diandongnan, Dechang, Guizhou, and Xilin) with white and gray body, and 31 hybrid offspring of river buffalo Nili-Ravi (or Murrah) and swamp buffalo. Among the three variation sites found, SNP684 was synonymous, while SNP310 and SNP384 were nonsynonymous, leading to p.S104G and p.I128M changes, respectively. Only Individuals carrying homozygote EBR/EBR were black. The genotype and phenotype analysis of the hybrid offspring of black river buffalo and gray swamp buffalo further revealed that the river buffalo type allele EBR or the allele carrying the amino acid p.104S was important for the full function of MC1R. The in silico functional analysis showed that the amino acid substitutions p.G104S and p.M128I had significant impact on the function of MC1R. Above results indicate that the allele EBR or the allele carrying the amino acid p.104S was associated with the black coat color in buffalo.  相似文献   

15.
Melanocortin 1-receptor (MC1R) is one of the major genes that controls chicken plumage colour. In this study, we investigated the sequence and haplotype distribution of the MC1R gene in native Japanese chickens, along with non-Japanese chicken breeds. In total, 732 and 155 chickens from 30 Japanese and eight non-Japanese breeds respectively were used. Three synonymous and 11 non-synonymous nucleotide substitutions were detected, resulting in 15 haplotypes (H0–H14). Of these, three were newly found haplotypes (H9, H13 and H14), of which one (H9) was composed of known substitutions C69T, T212C, G274A and G636A. The second one (H13) possessed newly found non-synonymous substitution C919G, apart from the known substitutions C69T, G178A, G274A, G636A and T637C. The third one (H14) comprised a newly discovered substitution C919G in addition to the known C69T, G274A and G409A substitutions. The homozygote for this new haplotype exhibited wt like plumage despite the presence of G274A. In addition to discovering a new nucleotide substitution (C919G) and three new haplotypes, we defined the plumage colour of the bird that was homozygous for the A644C substitution (H5 haplotype) as wheaten-like for the first time; although the substitution has been already reported, its effect was not revealed. Besides detecting the new plumage colour, we also confirmed that the A427G and G274A substitutions contribute in expressing brownish and black plumage colour respectively, as reported by the previous studies. Moreover, we confirmed that the buttercup allele does not express black plumage despite possessing a G274A substitution, under the suppression effect of A644C. In contrast, the birds homozygous for the birchen allele presented solid black plumage, which was contradictory to the previous reports. In conclusion, we revealed a large diversity in the MC1R gene of native Japanese chicken breeds, along with the discovery of a new non-synonymous nucleotide substitution (C919G) and three novel haplotypes (H9, H13 and H14).  相似文献   

16.
The co-segregation of plumage colour and sequence polymorphism in the melanocortin 1-receptor gene (MC1R) was investigated using an intercross between the red junglefowl and White Leghorn chickens. The results provided compelling evidence that the Extended black (E) locus controlling plumage colour is equivalent to MC1R. E/MC1R was assigned to chromosome 11 with overwhelming statistical support. Sequence analysis indicated that the E92K substitution, causing a constitutively active receptor in the sombre mouse, is the most likely causative mutation for the Extended black allele carried by the White Leghorn founders in this intercross. The MC1R sequence associated with the recessive buttercup (ebc) allele indicated that this allele evolved from a dominant Extended black allele as it shared the E92K and M71T substitutions with some E alleles. It also carried a third missense mutation H215P which thus may interfere with the constitutive activation of the receptor caused by E92K (and possibly M71T).  相似文献   

17.
Evolutionary changes in patterns and coloration of plumage are likely to represent a major mechanism for speciation among birds, yet the molecular basis for such changes remains poorly understood. Recently much attention has focused on the melanocortin-1 receptor (MC1R) as a candidate locus for determining the level and extent of epidermal melanin deposition. We tested the hypothesis that MC1R sequence variation is associated with interspecific variation in unmelanized plumage pattern elements in Old World leaf warblers (genus Phylloscopus). This genus is characterized by a variety of plumage patterns that nonetheless vary along similar lines. Species vary in the presence or absence of pale (unmelanized) pattern elements against a dark background, and these patterns are used in species recognition and courtship. We sequenced most of the MC1R coding region for eight Phylloscopus species, representing the full range of plumage patterns found in this genus. Although MC1R sequence varied among species, this variation was not related to melanin-based plumage variation. Rather, evolution of this locus in these birds appears to be conservative. Ratios of nonsynonymous to synonymous substitutions (dN/dS) were consistently low, suggesting that strong purifying selection has operated at this locus, and likelihood ratio testing revealed no evidence of variable selective pressures among lineages or across codons. Adaptive evolution at MC1R may be constrained by the adaptive importance of plumage pattern elements in this genus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号