共查询到17条相似文献,搜索用时 46 毫秒
1.
2.
毕赤酵母作为细胞工厂在小分子代谢产物发酵和蛋白制品生物合成中扮演着重要角色,具有极其重要的工业应用价值。随着CRISPR/Cas9等新型编辑工具的开发和应用,对毕赤酵母细胞工厂进行多基因高效率的工程化改造已成为可能。本文首先对毕赤酵母工程化改造的遗传操作技术和目标方向进行了归纳总结,其次介绍了毕赤酵母作为细胞工厂的应用现状,同时探讨了毕赤酵母细胞工厂的优点及缺陷,并对其发展方向作出展望;以期为未来的毕赤酵母工程化改造研究提供参考和启示,推动毕赤酵母细胞工厂在生物产业中的创新应用。 相似文献
3.
合成生物学的迅猛发展推动了微生物细胞工厂中多种复杂化学品的生物合成,但仍存在产量低、生产效率不高等诸多问题。基因编码型生物传感器可以感知细胞内外代谢物浓度及外界环境的波动,产生可测量的信号输出或调控通路中的基因表达水平,具有成本低、操作简单、可再生等优点。目前,基因编码型生物传感器已经成为合成生物学和代谢工程的重要组成部分,是微生物细胞工厂中代谢动态调控及理想表型进化/筛选的强大工具。概述了基因编码型生物传感器的组成及工作原理,重点介绍了基因编码型生物传感器在微生物代谢动态调控及高通量筛选中的最新研究进展,就基因编码型生物传感器设计与构建过程中面临的挑战进行探讨,并展望了其今后的发展方向。 相似文献
4.
生物体中大部分酶催化反应都需要辅因子参与,辅因子平衡对维持正常的细胞代谢至关重要,而辅因子失衡则会导致细胞生长和生产的紊乱。在微生物细胞工厂的构建中,通过调节辅因子代谢平衡来提高产物合成途径的效率,从而调控细胞生长与产物生产,使代谢流能够最大限度地流向目标产物,已经成为代谢调控的重要手段。目前常见的用于代谢调控的辅因子有NAD(P)H/NAD(P)+、辅酶、ATP/ADP等。围绕这几种辅因子的代谢途径及功能分类进行了综述,并总结了微生物中不同产物利用辅因子平衡策略进行合成调控的研究,以期为各类化合物的高效生物合成提供参考。 相似文献
5.
微生物代谢工程和合成生物学是当今微生物技术领域研究的热点,微生物的生长速度快、容易进行大规模培养;遗传背景清楚、遗传操作简便可靠等性质使其在与人类生活相关的多个领域中起到重要的作用。微生物细胞工厂是指人工设计的能够进行物质生产的微生物代谢体系。许多微生物细胞工厂的构建由于引入多个基因或整条代谢途径,而可能导致代谢失衡、部分代谢中间产物积累等问题,需要使用一定的调控策略加以控制。以下对涉及多个基因作用的微生物细胞工厂中所使用的调控策略,分为若干层次进行了总结和探讨,并对今后多基因控制策略的发展方向进行了预测与展望。 相似文献
6.
微生物化学品工厂以工程化设计理念,通过最优合成途径设计、生化网络重构、新元件创制及与途径-细胞-环境适配,重塑自然生产线,实现化学品的精准、定量、高效合成。作为一种颠覆性化学品生产新模式,微生物化学品工厂对构建工业经济发展的可再生原料路线、推进物质财富的绿色增长具有重大意义,成为发达国家科技竞争和产业发展的重点。为了集中展现微生物化学品工厂领域取得的最新进展,并促进生物制造产业的快速进步,《生物工程学报》特组织出版“微生物化学品工厂”专刊,汇集了国内科研工作者在材料单体、医药中间体、功能食品配料、有机酸生物合成以及非粮原料开发利用方面的最新研究成果,为微生物化学品工厂的高质量发展提供借鉴与指导。 相似文献
7.
在各种组学及其相应的网络研究相对成熟的基础上,集成各组学网络的细胞整合型网络或全细胞网络将大大提高对生物表型的预测能力,并成为代谢工程决策的有力武器.本文在阐述了细胞工厂设计中应该考虑细胞整合网络之后,综述了细胞整合网络的重建、分析、设计方法方面的有关问题,并进一步就研究细胞整合网络涉及的数据库、软件平台、并行计算几方面的作用作了介绍. 相似文献
8.
9.
10.
11.
12.
13.
Benjamin M. Woolston Timothy Roth Ishwar Kohale David R. Liu Gregory Stephanopoulos 《Biotechnology and bioengineering》2018,115(1):206-215
Formaldehyde is a prevalent environmental toxin and a key intermediate in single carbon metabolism. The ability to monitor formaldehyde concentration is, therefore, of interest for both environmental monitoring and for metabolic engineering of native and synthetic methylotrophs, but current methods suffer from low sensitivity, complex workflows, or require expensive analytical equipment. Here we develop a formaldehyde biosensor based on the FrmR repressor protein and cognate promoter of Escherichia coli. Optimization of the native repressor binding site and regulatory architecture enabled detection at levels as low as 1 µM. We then used the sensor to benchmark the in vivo activity of several NAD‐dependent methanol dehydrogenase (Mdh) variants, the rate‐limiting enzyme that catalyzes the first step of methanol assimilation. In order to use this biosensor to distinguish individuals in a mixed population of Mdh variants, we developed a strategy to prevent cross‐talk by using glutathione as a formaldehyde sink to minimize intercellular formaldehyde diffusion. Finally, we applied this biosensor to balance expression of mdh and the formaldehyde assimilation enzymes hps and phi in an engineered E. coli strain to minimize formaldehyde build‐up while also reducing the burden of heterologous expression. This biosensor offers a quick and simple method for sensitively detecting formaldehyde, and has the potential to be used as the basis for directed evolution of Mdh and dynamic formaldehyde control strategies for establishing synthetic methylotrophy. 相似文献
14.
15.
16.
Supported by the tools of contemporary synthetic biology, the field of metabolic engineering has advanced in its overarching purpose of contributing efficient bioprocesses for the synthesis of biochemicals by addressing a number of cell and process parameters. The morphology and spatial organization of bacterial biocatalysts has been somewhat overlooked in such endeavors. The shape, size, and surface features of bacteria are maintained over evolutionary timescales and, under tight control of complex genetic programs, are faithfully reproduced each generation—and offer a phenomenal target for manipulations. This review discusses how these structural traits of bacteria can be exploited for designing efficient biocatalysts based on specific morphologies of both single cells and natural and artificial communities (e.g., catalytic biofilms). Examples are presented on how morphologies and physical forms of bacterial cell factories can be programmed while engineering their biochemical activities. The concept of synthetic morphology opens up strategies for industrial purposes and holds the potential to improve the economic feasibility of some bioprocesses by endowing bacteria with emergent, useful spatial properties. By entertaining potential applications of synthetic morphology in the future, this review outlines how multicellular organization and bacterial biorobots can be programmed to fulfill complex tasks in several fields. 相似文献
17.