首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
表型可塑性可能在外来植物的成功入侵和随后的扩散中起到至关重要的作用。一些研究者推测喜旱莲子草(Alternanthera philoxeroides)入侵地种群可能比原产地种群对光强具有更强的可塑性反应。为了验证该假说,我们在正常光照和遮荫(30%正常光照)条件下研究了喜旱莲子草原产地(阿根廷)和入侵地(美国)种群在形态特征和生物量分配上是否存在显著差异。结果表明:(1)喜旱莲子草对光照强度具有很强的可塑性。在遮荫处理下,其根冠比和分枝生物量比显著降低,而比茎长和比叶面积显著增加;(2)原产地和入侵地喜旱莲子草的总生物量和比叶面积对遮荫的可塑性没有显著差异。入侵地种群的根冠比、分枝强度和比茎长的可塑性显著小于原产地种群;(3)无论在正常或低光照条件下,入侵地种群的根冠比(–20.8%)、分枝强度(–54.6%)、比茎长(–18.5%)和比叶面积(–8.6%)均显著低于原产地种群。这些结果表明,喜旱莲子草对光照强度具有很强的可塑性,这可能是该物种可以分布于从河岸带草丛到疏林灌丛等各种生境的主要原因;从原产地到入侵地,喜旱莲子草与耐阴性有关的性状对光照的可塑性显著降低,可能是该物种在入侵地能够形成单优势种群的主要原因。  相似文献   

2.
植物可以通过关键功能性状的表型可塑性来适应气候变暖背景下环境温度的增加。表型可塑性增强进化假说(evolution of increased phenotypic plasticity hypothesis)认为外来植物在引入地进化出了更强的表型可塑性。以往对该假说的验证多集中于外来植物对光照、水分、养分、邻体以及天敌等的可塑性进化, 而对增温条件下植物生长和功能性状可塑性进化的研究相对较少。仅有的几项研究多集中在温带地区, 且多集中于研究植物生长相关的性状, 而对植物的抗性和草食作用对增温的响应的关注相对较少。本研究采用同质园实验比较了喜旱莲子草(Alternanthera philoxeroides)引入地(中国)和原产地(阿根廷)各8个种群的生物量、功能性状和草食作用在热带地区(广州市增城区)对模拟全天增温2℃的响应差异。结果表明: (1)模拟全天增温显著降低了喜旱莲子草总生物量(-7.8%)、贮藏根生物量(-12.8%)、分枝强度(-11.6%)和茎端取食率(-34.4%)。(2)模拟全天增温造成的引入地种群总生物量降低幅度大于原产地种群; 模拟全天增温使引入地种群的比茎长和茎端取食率降低, 而原产地种群则相反。(3)无论是否模拟全天增温, 引入地种群的贮藏根生物量(+31.5%)、分枝强度(+38.5%)、比茎长(+30.2%)、根冠比(+24.5%)和比叶面积(+20.0%)均高于原产地种群, 茎端取食率则低于原产地种群(-35.8%)。这些结果表明, 热带地区全天增温2℃对喜旱莲子草是一种胁迫; 引入地种群的生物量对模拟全天增温2℃的响应更强, 而其株形相关性状(比茎长)和草食作用(茎端取食率)对模拟全天增温的可塑性方向与原产地种群相反。由于引入地种群在热带地区模拟全天增温条件下生物量的下降和草食作用的增加明显高于原产地种群, 因此在未来全球气候变暖的背景下, 热带地区温度升高可能不利于喜旱莲子草种群多度的增加。  相似文献   

3.
气候变暖背景下植物可通过关键性状的表型可塑性来适应环境温度的增加。表型可塑性增强进化假说预测定植到新环境中的入侵植物种群具有演化出更强表型可塑性的潜力。此前对可塑性进化的研究涵盖了外来植物性状对水分条件、光照变化、土壤养分、邻体根系以及天敌防御等的响应, 而较少有研究关注增温条件下植物重要性状的可塑性进化。已有的部分研究多集中在温带和热带地区, 而较少关注入侵植物在高寒地区对增温的响应; 且研究多集中在植物生长相关性状, 较少关注功能性状和防御性状。本研究采用同质园实验比较了喜旱莲子草6个引入地(中国)种群和6个原产地(阿根廷)种群, 在西藏拉萨模拟全天增温2℃处理下的适合度性状、功能性状和防御性状的响应差异。结果表明: (1)高寒地区模拟全天增温显著提高了喜旱莲子草总生物量(+36.4%)、地上生物量(+34.5%)、贮藏根生物量(+51.4%)和毛根生物量(+33.6%), 降低了分枝强度(-19.8%)和比茎长(-30.2%); (2)模拟全天增温使引入地种群的比叶面积和黄酮含量增加, 而原产地种群则相反。这些结果表明高寒地区全天增温2℃对喜旱莲子草可能是一种有利条件。引入地种群的适合度性状对模拟全天增温2℃的响应比原产地种群更强, 而其光能利用相关性状和防御性状的响应可能提升了其在高寒地区的适合度。因此, 在未来全球气候变暖的背景下, 高寒地区温度升高可能更有利于喜旱莲子草引入地种群的定植和扩散。  相似文献   

4.
竞争力增强进化假说(Evolution of Increased Competitive Ability,EICA)认为入侵植物在入侵地由于天敌逃逸导致对天敌防御投入降低而增加生长和繁殖等投入。然而,EICA假说所预测防御能力的进化主要集中在防御的组成抗性方面,而从诱导抗性和耐受性的角度进行的验证还很有限,并且忽视了生境资源可利用性对植物防御策略的影响。本研究采用同质园实验比较了喜旱莲子草(Alternanthera philoxeroides)原产地(阿根廷)和入侵地(美国)各9个种群,在高、低养分和有、无专食性天敌取食处理下的防御相关功能性状(比茎长、根冠比)及其对天敌取食的诱导反应,以及它们与植物适合度相关指标的关系。结果表明:入侵地种群具有较高的总生物量(+14.7%)、较低的比茎长(防御钻茎化蛹天敌的重要指标,-27.5%),暗示其个体大小增加而防御投入降低,符合EICA假说的预测。入侵地种群耐受性与原产地种群没有显著差异。在高养分下,入侵地种群的比茎长对专食性天敌取食的诱导反应显著增加,且与总生物量呈显著正相关。这些结果表明,相比原产地种群,入侵地种群具有更高的生物量,对专食性天敌的组成抗性降低,且在高养分下对专食性天敌的诱导抗性增加,推测生境的养分富集可能会降低喜旱莲子草的生物防治效果。  相似文献   

5.
李永慧  李钧敏  闫明 《生态学杂志》2012,31(6):1367-1372
分别以受喜旱莲子草(Alternanthera philoxeroides)入侵和未受喜旱莲子草入侵的当地植物群落土壤为生长基质,比较不同基质上入侵植物喜旱莲子草和同属的土著植物莲子草(A.sessilis)的生长指标,探讨喜旱莲子草入侵群落土壤对喜旱莲子草及莲子草生长的影响机制。结果表明,喜旱莲子草入侵群落土壤抑制了莲子草的生长,显著降低了根生物量、茎生物量和总生物;改变了形态特征,显著降低了分枝数量、茎长度、根长、根体积;减少了对根的生物量分配,显著抑制了根质量比与根冠比。喜旱莲子草入侵群落土壤对入侵植物喜旱莲子草的生物量、分枝数量、茎长度、根长、根体积没有显著的抑制作用,而显著增加了其叶片数量和叶质量比。这种效应将有利于喜旱莲子草在入侵地形成单优群落,表明土壤在喜旱莲子草成功入侵中起了重要作用。  相似文献   

6.
外来植物从原产地到入侵地通常会经历植食性天敌选择压力的变化,其生长防御性状的快速适应性进化是成功入侵的重要机制之一。植食性天敌按食性专一性分为专食性天敌与广食性天敌,并对植物生长防御性状产生不同的选择压力。然而,在自然群落中两类植食性天敌的相对比例可能会随时间和空间的改变而改变,这些变化对入侵植物生长防御进化的影响尚不清楚。本研究以喜旱莲子草(Alternanthera philoxeroides)为研究对象,在同质园条件下比较了原产地(阿根廷)和入侵地(中国)种群在不同专食性-广食性天敌比例处理下生长防御性状的差异。结果显示:专食性-广食性天敌比例对喜旱莲子草生长防御性状的影响无显著差异,但其与来源地之间的交互作用对生长性状中的贮藏根生物量与根冠比具有显著影响。其中入侵地种群的贮藏根生物量与根冠比随着专食性天敌比例的增加而增加,而原产地种群正好相反。通过对比原产地与入侵地种群生长防御相关性状发现,入侵地种群的总生物量(–21.4%, P=0.027)、地上生物量(–22.6%, P=0.026)、生长速率(–17.5%, P <0.001)和黄酮含量(–38.4%, P=0.0...  相似文献   

7.
李委涛  郑玉龙  冯玉龙 《生态学报》2014,34(23):6890-6897
飞机草(Chromolaena odorata)是我国热带地区危害严重的外来入侵植物,为揭示适应进化对其成功入侵的贡献,在同质种植园中,比较研究了飞机草10个入侵地种群与12个原产地种群生长性状的差异,为排除奠基者效应的可能影响,进一步比较了飞机草10个入侵地种群与其原产地可能的祖先种群间的差异。结果表明,飞机草10个入侵地种群的基茎、株高、分枝数、生物量和比叶面积均显著高于12个原产地种群;与可能的祖先种群相比,飞机草10个入侵种群的生物量、分枝数和比叶面积仍更高。这些结果表明,在长期的入侵过程中飞机草通过进化提高了资源向生长的分配,支持增强竞争能力的进化假说。  相似文献   

8.
喜旱莲子草茎叶解剖结构从原产地到入侵地的变异式样   总被引:3,自引:1,他引:3  
长期以来人们一直认为,外来种入侵及其危害是由于一个物种从原产地到入侵地其环境因子改变(如天敌压力的减弱等)而导致的。近年来,越来越多的研究者开始认识到,生物入侵过程实际上是一个现代人类活动影响下的物种的快速进化过程,生物入侵的进化遗传学已成为入侵生物学研究中最活跃的分支之一。作者比较了来自原产地(阿根廷)和入侵地(中国和美国)的喜旱莲子草(Alternantheraphiloxeroides)的11个种群在茎、叶解剖结构方面的变异式样,发现所研究的19个性状在原产地(阿根廷)和入侵地(中国和美国)的变异情况明显不同:在原产地种群中,共有9个性状指标存在显著差异,遗传率在49–89%之间,这9个性状是气孔密度、气孔指数、茎直径、髓腔直径、维管柱直径、皮层厚度、维管柱面积比、髓腔面积比和叶形指数;而在入侵地种群间,19个性状指标均无明显差异。这表明喜旱莲子草从原产地到入侵地其遗传多样性降低;入侵地喜旱莲子草种群间的形态变异主要为表型可塑性。根据19个形态指标对喜旱莲子草11个种群进行主成分分析和聚类,结果显示:所有入侵地种群和原产地的Ar1种群(SantaFé,59°49′W,29°16′S)聚为一类,原产地的Ar4(Tandil,59°03′W,37°11′S)单独聚为一类,原产地的其他4个种群聚为一类。表明Ar1种群可能与入侵中国的喜旱莲子草在基因型上更为接近。这一结果为进一步揭示喜旱莲子草入侵机理(如杂交适应性)和在原产地寻求对应天敌的生物防治工作提供了基础数据。  相似文献   

9.
王坤  杨继  陈家宽 《生物多样性》2010,18(6):615-715
喜旱莲子草(Alternanthera philoxeroides)入侵已在中国造成巨大的生态和经济损失。为揭示喜旱莲子草成功入侵的生态机制并预测其种群扩张趋势及其与环境因子的关系, 作者比较了喜旱莲子草与其同属的外来弱入侵种刺花莲子草(A. pungens)以及土著种莲子草(A. sessilis)在不同土壤水分、养分条件下的生长状况。结果显示: 在高水高肥条件下, 喜旱莲子草的生物量要高于刺花莲子草和莲子草, 而在低水低肥条件下却不如这两个同属种; 弱入侵种刺花莲子草在低水条件下的生物量要高于强入侵种喜旱莲子草和土著种莲子草, 说明植物的入侵性受环境条件的影响。另外, 强入侵种喜旱莲子草形态学性状的可塑性较高, 在各种条件下都具有较高的比叶面积, 暗示这两个指标可作为莲子草属外来植物入侵性的预测指标。  相似文献   

10.
采用温室盆栽试验研究了不同氮、磷水平对入侵植物飞机草(Chromolaena odorata)营养器官表型可塑性的影响。结果表明:随着氮、磷水平的上升,飞机草的分枝数量、分枝长度、叶片数、总叶面积、总生物量以及茎、叶器官生物量显著增加。飞机草的根生物量比、根冠比随着氮、磷水平的升高显著下降;茎生物量比在供氮(磷)量达0.05 g·kg-1时显著增加,之后保持稳定;叶生物量比随氮水平的增加先降后升,但其受磷水平变化的影响较小。叶面积比、叶根比、比叶面积和平均相对生长速率随着氮、磷水平的上升显著增加,但叶面积比、叶根比和比叶面积在供磷量≥0.05 g·kg-1时的差异不明显。飞机草的分枝数量、分枝长度、叶片数、总叶面积、根生物量比、根冠比、叶根比以及茎、叶与植株总生物量等指标的可塑性指数较高,并且对氮素的响应更强。表明氮、磷水平能够显著影响飞机草的植株生长,飞机草亦能够通过植株形态、结构以及生物量积累与分配的调整来适应多变的养分环境,并表现出较高的可塑性。  相似文献   

11.
How introduced plants, which may be locally adapted to specific climatic conditions in their native range, cope with the new abiotic conditions that they encounter as exotics is not well understood. In particular, it is unclear what role plasticity versus adaptive evolution plays in enabling exotics to persist under new environmental circumstances in the introduced range. We determined the extent to which native and introduced populations of St. John's Wort (Hypericum perforatum) are genetically differentiated with respect to leaf-level morphological and physiological traits that allow plants to tolerate different climatic conditions. In common gardens in Washington and Spain, and in a greenhouse, we examined clinal variation in percent leaf nitrogen and carbon, leaf delta(13)C values (as an integrative measure of water use efficiency), specific leaf area (SLA), root and shoot biomass, root/shoot ratio, total leaf area, and leaf area ratio (LAR). As well, we determined whether native European H. perforatum experienced directional selection on leaf-level traits in the introduced range and we compared, across gardens, levels of plasticity in these traits. In field gardens in both Washington and Spain, native populations formed latitudinal clines in percent leaf N. In the greenhouse, native populations formed latitudinal clines in root and shoot biomass and total leaf area, and in the Washington garden only, native populations also exhibited latitudinal clines in percent leaf C and leaf delta(13)C. Traits that failed to show consistent latitudinal clines instead exhibited significant phenotypic plasticity. Introduced St. John's Wort populations also formed significant or marginally significant latitudinal clines in percent leaf N in Washington and Spain, percent leaf C in Washington, and in root biomass and total leaf area in the greenhouse. In the Washington common garden, there was strong directional selection among European populations for higher percent leaf N and leaf delta(13)C, but no selection on any other measured trait. The presence of convergent, genetically based latitudinal clines between native and introduced H. perforatum, together with previously published molecular data, suggest that native and exotic genotypes have independently adapted to a broad-scale variation in climate that varies with latitude.  相似文献   

12.
? A high ability of alien plant species to capitalize on increases in resource availability has been suggested as an explanation for being globally successful. Here, we tested this hypothesis meta-analytically using existing data from experiments manipulating plant resources (light, water and nutrients). ? From these studies we extracted the response to resource increase of biomass, as an indicator of plant performance, and the responses of two traits related to resource capture: root : shoot ratio and specific leaf area (SLA). For 211 species recorded in the Global Compendium of Weeds, we assessed the relationship between effect sizes from such studies and the number of global regions where a species was established. ? We found that globally widespread species exhibited greater biomass responses to increases in resources overall, compared to less widespread species. Root : shoot ratio and SLA responses to increased resource availability were not related to species global distribution. ? In general, globally widespread alien plant species were better able to capitalize on increased availability of resources, through achieving increased growth and biomass accumulation, while greater plasticity of key resource-capture traits per se did not appear to be related to greater success.  相似文献   

13.
Green cabbage (Brassica campestris, leafy variety) and turnip (Brassica campestris var. rapifera, rooty variety) were grown in both monocultures and mixtures at three nutrient levels to investigate their responses to nutrient availability with respect to biomass allocation, morphological plasticity and competitive ability. Their allocation parameters and leaf morphological traits were affected by both nutrient availability and developmental stage. Both of the varieties had a smaller biomass allocation to leaf blades, but a greater allocation to petioles at high nutrient levels. Root:shoot ratio (RSR) of green cabbage decreased with increasing nutrient availability, whereas that of turnip increased. Turnip had a smaller leaf blade weight ratio (LBWR) than cabbage, being compensated for by larger leaf area ratio (LAR) and specific leaf area (SLA). Leaf area ratio and SLA of both the varieties increased with increasing nutrient availability as did their mean dry weights. The mean dry weight of turnip was slightly greater than that of green cabbage in their respective monocultures, while that of green cabbage was greater than that of turnip in their 1:1 mixture. Therefore, green cabbage, having inherently greater biomass allocation to leaves, was generally more competitive than turnip with more biomass allocation to roots, especially at higher nutrient levels. However, within a variety, morphological plasticity (variation in LAR and SLA) was more important than the plasticity in biomass allocation (e.g. variation in RSR and LBWR) in determining competitive ability. The implication of our results is that competition models based on biomass allocation pattern alone may fail to predict competitive outcomes and that such models should also take morphological plasticity into full account.  相似文献   

14.
Several recent studies have shown that plant invasions can occur in resource-poor and relatively undisturbed habitats. It is, therefore, important to investigate whether and how life-history traits of species invasive in such habitats differ from those of species that are only invasive in disturbed and resource rich habitats. We compared the growth of seedlings of native and invasive tree species from nutrient-poor secondary forests in the tropical Seychelles. We hypothesised that the relative performance of the two groups would change predictably along resource gradients, with native species performing better at low levels of resource availability and invasive species performing better at higher levels. To test this hypothesis, we performed a common garden experiment using seedlings of six invasive and seven native tree species grown under three levels of light (65, 11 and 3.5% of ambient light) and two of nutrients (low and high). Due to large variation among species, differences in growth rates (RGR) were not significant among seedlings of the native and the invasive species. However, seedlings of the invasive species showed higher specific leaf areas (SLA) and higher leaf nutrient contents than seedlings of the native species. They also exhibited greater plasticity in biomass and nutrient allocation (i.e., greater plasticity in LAR, RSR and leaf nutrient contents) in response to varying resource availability. However, differences between the mean values of these parameters were generally small compared with variation within groups. We conclude that successful invaders on nutrient-poor soils in the Seychelles are either stress-tolerant, possessing growth traits similar to those of the native species, or fast-growing but adapted to nutrient-poor soils. In contrast, the more typical, fast-growing alien species with no particular adaptations to nutrient-poor soils seem to be restricted to relative nutrient-rich sites in the lowlands. The finding—that some introduced species thrive in resource-poor habitats—suggests that undisturbed habitats with low resource availability may be less resistant to plant invasions than was previously supposed.  相似文献   

15.
Climate warming and biological invasions by alien species are two key factors threatening the world’s biodiversity. To date, their impact has largely been studied independently, and knowledge on whether climate warming will promote invasions relies strongly on bioclimatic models. We therefore set up a study to experimentally compare responses to warming in native and alien plant species. Ten congeneric species pairs were exposed to ambient and elevated temperature (+3°C) in sunlit, climate-controlled chambers, under optimal water and nutrient supply to avoid interaction with other factors. All species pairs combined, total plant biomass reacted differently to warming in alien versus native species, which could be traced to significantly different root responses. On average, native species became less productive in the warmer climate, whereas their alien counterparts showed no response. The three alien species with the strongest warming response (Lathyrus latifolius, Cerastium tomentosum and Artemisia verlotiorum) are currently non-invasive but all originate from regions with a warmer climate. Still, other alien species that also originate from warmer regions became less or remained equally productive. Structural or ecophysiological acclimation to warming was largely absent, both in native and alien species, apart from light-saturated photosynthetic rate, where warming tended to restrain the native but not the alien species. A difference in the capacity to acclimate photosynthetic rates to the new climate may therefore have caused the contrasting biomass response. Future experiments are needed to ascertain whether climate warming can effectively tip the balance between native and alien competitors.  相似文献   

16.
The role of phenotypic plasticity in plant invasions is among the most often discussed relationships in invasion ecology. However, despite the large number of studies on this topic, there is little consistency. Reconsideration of the role of plasticity by distinguishing two substantially distinct trait-groups, performance traits (contributing directly to fitness) and functional traits (influencing fitness indirectly), could form a more operative framework for comparative studies. In the current study we expect that invasive species benefit from being plastic in functional traits, which allows them to maintain a more constant performance across different environmental conditions compared to non-invasive alien species. We compared invasive and naturalized non-invasive alien plant species by their germination (20 species), their vegetative (10 species) and their reproductive (four species) responses to three different levels of water, light and nutrient availability in a common garden experiment. Used traits were classified into performance (germination ratio, total biomass, seed number) and functional traits (time to germination, root:shoot ratio, specific leaf area, reproductive allocation). We found that invasive and non-invasive species responded similarly to environmental factors, except for example that invasive species germinated earlier with decreasing light conditions or, surprisingly, non-invasive species reacted more intensely to increased nitrogen availability by having a superior ability to achieve greater biomass. The two groups were equally plastic in all the germination and vegetative traits measured but the reproductive traits, since higher plasticity in relative reproductive allocation and higher constancy in reproductive performance showed a pronounced relation with invasiveness.  相似文献   

17.
Invasive species are hypothesized to be more plastic than co‐occurring native congeners, and variation in plasticity among invasive populations is predicted to facilitate invasion of new habitats. To explore the invasive ability of Bidens frondosa, we compared the plastic responses to water and nitrogen addition of the invasive B. frondosa in China with the co‐occurring native congener B. tripartita, as well as among B. frondosa populations. The invasive plant performed better and showed higher phenotypic plasticity to water and nitrogen addition than the native. In addition, variations in performance and phenotypic plasticity were observed among the invasive populations. The biomass of the HN (Henan province) population increased more than that of other populations in response to nitrogen addition. The specific leaf area (SLA) of the GX (Guangxi province) population increased, while the SLA of the HN population decreased, and the HB (Hebei province) and EZ (Hubei province) populations showed no change in response to nitrogen addition. The observed higher phenotypic plasticity of B. frondosa relative to B. tripartita, and the observed variation in plasticity among B. frondosa populations may explain the invasiveness of this species. Predicted future increases in precipitation and atmospheric N deposition may further increase the invasiveness of B. frondosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号