首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
近年来,连续型细胞培养由于其高单位体积产量、稳定的产品质量属性以及潜在的成本节约效应正成为生物大分子制药生产的工艺焦点。相比传统的流加培养模式,灌流培养因培养的连续性、操作的复杂性,致使其反应器规模培养需消耗大量培养基,产生更高人力成本,不能满足当今加速化高效化的工艺开发需求。为获得稳健的灌流培养工艺并控制较低成本,高通量灌流培养模型被用于批量化的小规模灌流培养,进行灌流培养前期的克隆筛选、培养基筛选及工艺参数优化等工作,为后期大规模培养提供实用性数据支持,同时也被用于预测大规模培养的细胞表型和产品质量属性。重点介绍了当前高通量系统包括摇瓶/摇管系统、多平行自动化系统以及微流控体系用作灌流培养的特征、具体应用及比较,同时论述当前高通量灌流培养系统在生物工艺领域发展所面临的机遇及挑战,并展望其应用前景。  相似文献   

2.
当前生物制药领域,由于成本压力、市场需求急剧波动以及生物仿制药的竞争日益激烈,现有的生物制造技术受到诸多挑战,生物技术公司越来越倾向于开发灵活、高效的创新型生产制造工艺。灌流培养作为当前哺乳动物细胞培养的重要工艺之一,不仅可以通过不断移出副产物和添加营养物来提供有利于细胞的稳定环境,以解决蛋白质量不稳定或者表达量偏低等问题,还可以通过提高单位体积产率来优化产能利用率并提高生产效率。通过系统介绍灌流培养用于哺乳动物细胞培养的研究进展,为其进一步开发与应用提供参考。  相似文献   

3.
由于各种疾病在全球范围内的肆虐,国际市场对重组腺病毒载体(adenoviral vector,Adv)疫苗的需求量急剧增加,而工艺研究是解决这一问题的有效手段之一。在细胞接毒前施加高渗胁迫可以提高分批培养模式下的Adv产量,新兴的灌流培养也可以显著提高Adv的产量。将高渗胁迫工艺与灌流培养相结合,有望进一步提升高细胞密度生产过程中的Adv产量。本研究利用摇瓶结合拟灌流培养作为生物反应器灌流培养的缩小模型,使用渗透压为300–405 mOsm的培养基研究了高渗胁迫对细胞生长和Adv生产的影响。结果显示,在细胞生长阶段使用370 mOsm的高渗透压培养基,在病毒生产阶段使用300 mOsm的等渗透压培养基的灌流培养工艺有效地提高了Adv的产量。进一步研究发现这可能归因于病毒复制后期HSP70蛋白的表达量增加。将这种工艺放大至生物反应器中,Adv的产量达到3.2×1010 IFU/mL,是传统灌流培养工艺的3倍。本研究首次将高渗胁迫工艺与灌流培养相结合的策略应用于HEK 293细胞生产Adv,同时揭示了高渗胁迫工艺增产Adv的可能原因,为HEK 293细胞生产其他类型Adv的工艺优化提供了借鉴。  相似文献   

4.
动物细胞大规模培养生产蛋白的工艺选择   总被引:2,自引:0,他引:2  
目前全世界蛋白治疗药物的迅速增长和市场需求已远远超过了现有生产能力。动物细胞规模化生产重组蛋白和抗体的工艺选择可考虑使用当前较成熟的工业化支持技术平台,以缩短产品工艺研发的时间,加快工业化进程。当前被FDA批准的生物技术产品以及公开发表的生产工艺占有主流优势的是搅拌式生物反应器悬浮培养,工艺设计是流加或灌流培养。其大规模细胞培养生产所面临的挑战是获得最大生产力的同时注重维持产品的质量;去除所有培养环境中外源因子的污染,更为精确有效的工艺控制手段,规模化培养中氧气的限定与溶解CO2浓度累积的控制等。  相似文献   

5.
近年来,用于重组蛋白生产的哺乳动物细胞表达领域涌现出一系列革命性的新技术。优化的工程细胞为表达重组蛋白提供了优良的宿主;基于荧光的筛选方法可以快捷地得到高表达细胞株;高通量的培养工艺能够预测适合外源蛋白表达的细胞培养条件;可抛弃式生物反应器为大规模细胞培养提供了更多的选择;大规模瞬时表达技术节省了重组蛋白的生产时间。这些新技术提高了重组蛋白的研发和生产效率,加快了蛋白药物的工业化进程。  相似文献   

6.
常压室温等离子体(ARTP)诱变及高通量筛选那西肽高产菌株   总被引:2,自引:0,他引:2  
采用新型常压室温等离子体(ARTP)诱变活跃链霉菌(Streptomyces actuosu),并应用抑菌圈和48孔板培养方法高通量筛选高产那西肽菌株。研究表明抑菌圈径的大小与48孔板效价之间以及48孔板效价与摇瓶效价之间均有较好的相关性,系数R分别达到0.534和0.896。通过多轮ARTP诱变及高通量筛选最终获得了3株相对效价提高50%以上的遗传性能稳定的突变株。ARTP诱变技术作为获得那西肽高产菌株的有效途径,与传统摇瓶发酵筛选相比,48孔板及抑菌圈法能显著提高那西肽高产菌株的筛选效率。  相似文献   

7.
随着人类基因组大规模测序的完成,下一步的挑战是了解每一个基因的功能 . RNA 干扰文库为大规模基因功能筛选提供了可能 . 虽然用于线虫等模式生物的 RNAi 文库,已经证明是大规模基因功能筛选的有效方法,但这些文库不能用于高等动物的细胞 . 自 2003 年以来,用于人的细胞和哺乳动物细胞的 RNAi 文库取得了突破,相继出现构建已知基因 RNAi 文库和构建随机 RNAi 文库的报道,并成功地应用于大规模基因功能的筛选 . RNAi 文库作为一种简单、高效、大规模、高通量的功能基因组学研究的工具,将在基因功能研究、发现新的药物靶基因、发现疾病相关基因等方面有广阔的应用前景 .  相似文献   

8.
近年来,用于单抗药物生产的动物细胞大规模培养技术发展迅速.此领域的技术进展集中在个性化培养基开发,工艺条件优化等方面.本文总结了用于提高重组抗体表达水平的常用方法,以及细胞培养工艺对抗体药物“关键质量属性”(聚体、降解、糖基化修饰、电荷变异等)的诸多影响.此外,细胞培养工艺在产业化过程面临着工艺放大与技术转移,定性研究与工艺验证等实际问题.未来大规模细胞培养工艺的开发,将进一步借助动物细胞的组学研究成果和新兴的“过程分析技术”.  相似文献   

9.
李雪良  钱钧弢  刘金  房峻  陈坚 《生物工程学报》2020,36(11):2241-2249
微小型生物反应器体积微小但在线分析检测和过程控制功能媲美台式装备。其核心支撑技术包括一次性材料及微加工技术、非接触式光学传感器、自动化以及实验设计(DOE)、数据分析软件与过程控制的整合。由于体积微小、湍流程度和单位能耗较低,微小型反应器内的混合、传质、剪切特性与工业规模设备有一定的区别。现阶段微小型生物反应器主要用于菌株和细胞系筛选和工艺优化,在实现高通量工艺的同时确保了数据的丰度,对缩短研发周期和加速产品上市,尤其是在应对突发性传染性疾病方面有着重要的意义。未来,精准医疗概念的落实也依赖功能柔性化的微小型生物反应器系统。  相似文献   

10.
在单克隆抗体药生产过程中,其糖基化修饰可能受到多种工艺参数的影响,因而容易产生异质性,并且抗体糖基化和抗体半衰期、免疫源性、ADCC、CDC等密切相关,所以单克隆抗体的糖基化修饰是重要的质量属性,需要在生物药尤其是生物类似药开发过程中重点关注,并加以调控。通过概述培养过程中的细胞株、培养工艺,以及培养基对糖型的影响,讨论如何在工艺开发过程开展研究,确保产品糖基化的一致性,从而保证单抗药物的疗效及安全性。  相似文献   

11.
Continuous upstream processing in mammalian cell culture for recombinant protein production holds promise to increase product yield and quality. To facilitate the design and optimization of large-scale perfusion cultures, suitable scale-down mimics are needed which allow high-throughput experiments to be performed with minimal raw material requirements. Automated microbioreactors are available that mimic batch and fed-batch processes effectively but these have not yet been adapted for perfusion cell culture. This article describes how an automated microbioreactor system (ambr15) can be used to scale-down perfusion cell cultures using cell sedimentation as the method for cell retention. The approach accurately predicts the viable cell concentration, in the range of about 1 × 107 cells/mL for a human cell line, and cell viability of larger scale cultures using a hollow fiber based cell retention system. While it was found to underpredict cell line productivity, the method accurately predicts product quality attributes, including glycosylation profiles, from cultures performed in bioreactors with working volumes between 1 L and 1,000 L. The spent media exchange method using the ambr15 was found to predict the influence of different media formulations on large-scale perfusion cultures in contrast to batch and chemostat experiments performed in the microbioreactor system. The described experimental setup in the microbioreactor allowed an 80-fold reduction in cell culture media requirements, half the daily operator time, which can translate into a cost reduction of approximately 2.5-fold compared to a similar experimental setup at bench scale.  相似文献   

12.
Perfusion technology has been successfully used for the commercial production of biotherapeutics, in particular unstable recombinant proteins, for more than a decade. However, there has been a general lack of high-throughput cell culture tools specifically for perfusion-based cell culture processes. Here, we have developed a high-throughput cell retention operation for use with the ambr® 15 bioreactor system. Experiments were run in both 24 and 48 reactor configurations for comparing perfusion mimic models, media development, and clone screening. Employing offline centrifugation for cell retention and a variable volume model developed with MATLAB computational software, the established screening model has demonstrated cell culture performance, productivity, and product quality were comparable to bench scale bioreactors. The automated, single use, high-throughput perfusion mimic is a powerful tool that enables us to have rapid and efficient process development of perfusion-based cell culture processes.  相似文献   

13.
This work investigates the insights and understanding which can be deduced from predictive process models for the product quality of a monoclonal antibody based on designed high‐throughput cell culture experiments performed at milliliter (ambr‐15®) scale. The investigated process conditions include various media supplements as well as pH and temperature shifts applied during the process. First, principal component analysis (PCA) is used to show the strong correlation characteristics among the product quality attributes including aggregates, fragments, charge variants, and glycans. Then, partial least square regression (PLS1 and PLS2) is applied to predict the product quality variables based on process information (one by one or simultaneously). The comparison of those two modeling techniques shows that a single (PLS2) model is capable of revealing the interrelationship of the process characteristics to the large set product quality variables. In order to show the dynamic evolution of the process predictability separate models are defined at different time points showing that several product quality attributes are mainly driven by the media composition and, hence, can be decently predicted from early on in the process, while others are strongly affected by process parameter changes during the process. Finally, by coupling the PLS2 models with a genetic algorithm first the model performance can be further improved and, most importantly, the interpretation of the large‐dimensioned process–product‐interrelationship can be significantly simplified. The generally applicable toolset presented in this case study provides a solid basis for decision making and process optimization throughout process development. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1368–1380, 2017  相似文献   

14.
Fermentanomics is an emerging field of research and involves understanding the underlying controlled process variables and their effect on process yield and product quality. Although major advancements have occurred in process analytics over the past two decades, accurate real‐time measurement of significant quality attributes for a biotech product during production culture is still not feasible. Researchers have used an amalgam of process models and analytical measurements for monitoring and process control during production. This article focuses on using multivariate data analysis as a tool for monitoring the internal bioreactor dynamics, the metabolic state of the cell, and interactions among them during culture. Quality attributes of the monoclonal antibody product that were monitored include glycosylation profile of the final product along with process attributes, such as viable cell density and level of antibody expression. These were related to process variables, raw materials components of the chemically defined hybridoma media, concentration of metabolites formed during the course of the culture, aeration‐related parameters, and supplemented raw materials such as glucose, methionine, threonine, tryptophan, and tyrosine. This article demonstrates the utility of multivariate data analysis for correlating the product quality attributes (especially glycosylation) to process variables and raw materials (especially amino acid supplements in cell culture media). The proposed approach can be applied for process optimization to increase product expression, improve consistency of product quality, and target the desired quality attribute profile. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1586–1599, 2015  相似文献   

15.
Brian Kelley 《MABS-AUSTIN》2009,1(5):443-452
Manufacturing processes for therapeutic monoclonal antibodies (mAbs) have evolved tremendously since the first licensed mAb product in 1986. The rapid growth in product demand for mAbs triggered parallel efforts to increase production capacity through construction of large bulk manufacturing plants as well as improvements in cell culture processes to raise product titers. This combination has led to an excess of manufacturing capacity, and together with improvements in conventional purification technologies, promises nearly unlimited production capacity in the foreseeable future. The increase in titers has also led to a marked reduction in production costs, which could then become a relatively small fraction of sales price for future products which are sold at prices at or near current levels. The reduction of capacity and cost pressures for current state-of-the-art bulk production processes may shift the focus of process development efforts and have important implications for both plant design and product development strategies for both biopharmaceutical and contract manufacturing companies.Key words: bioprocessing, cell culture, purification, economics, capacity, manufacturing, production, facility, biopharmaceutical  相似文献   

16.
Increasing cost pressures are driving the rapid adoption of disposables in bioprocessing. While well ensconced in lab‐scale operations, the lower operating/ validation costs at larger scale and relative ease of use are leading to these systems entering all stages and operations of a typical biopharmaceutical manufacturing process. Here, we focus on progress made in the incorporation of disposable equipment with sensor technology in bioprocessing throughout the development cycle. We note that sensor patch technology is mostly being adapted to disposable cell culture devices, but future adaptation to downstream steps is conceivable. Lastly, regulatory requirements are also briefly assessed in the context of disposables and the Process Analytical Technologies (PAT) and Quality by Design (QbD) initiatives. Biotechnol. Bioeng. 2009;102: 348–356. © 2008 Wiley Periodicals, Inc.  相似文献   

17.
The merits of continuous processing over batch processing are well known in the manufacturing industry. Continuous operation results in shorter process times due to omission of hold steps, higher productivity due to reduced shutdown costs, and lowers labor requirement. Over the past decade, there has been an increasing interest in continuous processing within the bioprocessing community, specifically those involved in production of biotherapeutics. Continuous operations in upstream processing (perfusion) have been performed for decades. However, recent development of continuous downstream operations has led the industry to envisage an integrated bioprocessing platform for efficient production. The regulators, key players in the biotherapeutic industry, have also expressed their interest and willingness in this migration from the traditional batch processing. This paper aims to review major developments in continuous bioprocessing in the past decade. A discussion of pros and cons of the different proposed approaches has also been presented.  相似文献   

18.
During biopharmaceutical process development, it is important to improve titer to reduce drug manufacturing costs and to deliver comparable quality attributes of therapeutic proteins, which helps to ensure patient safety and efficacy. We previously reported that relative high-iron concentrations in media increased titer, but caused unacceptable coloration of a fusion protein during early-phase process development. Ultimately, the fusion protein with acceptable color was manufactured using low-iron media, but the titer decreased significantly in the low-iron process. Here, long-term passaging in low-iron media is shown to significantly improve titer while maintaining acceptable coloration during late-phase process development. However, the long-term passaging also caused a change in the protein charge variant profile by significantly increasing basic variants. Thus, we systematically studied the effect of media components, seed culture conditions, and downstream processing on productivity and quality attributes. We found that removing β-glycerol phosphate (BGP) from basal media reduced basic variants without affecting titer. Our goals for late-phase process development, improving titer and matching quality attributes to the early-phase process, were thus achieved by prolonging seed culture age and removing BGP. This process was also successfully scaled up in 500-L bioreactors. In addition, we demonstrated that higher concentrations of reactive oxygen species were present in the high-iron Chinese hamster ovary cell cultures compared to that in the low-iron cultures, suggesting a possible mechanism for the drug substance coloration caused by high-iron media. Finally, hypotheses for the mechanisms of titer improvement by both high-iron and long-term culture are discussed.  相似文献   

19.
A fed-batch process for the production of biosimilar monoclonal antibody was developed. Since the brand product is produced by perfusion process, the impact of process change from perfusion to fed-batch on product quality and cell performance was evaluated. Perfusion culture was performed at 0.47–1.00 (v/v/d) perfusion rate by spin-filter method with 15–17 μm mesh. Culture parameters such as pH (6.8–7.2), dissolved oxygen (40–70% air saturation), temperature (37 °C) and agitation speed (250 rpm) were applied in both culture modes. In terms of cell performance, volumetric productivity increased 3.7 times while process performance increased 7.5 times in fed-batch culture due to 10 times higher scalability. Considering the glycosylation pattern and charge variants, no significant changes in product quality were observed upon process change, although intact IgG level slightly decreased in fed-batch mode. The change of production media showed more effect on glycosylation patterns than the operation in different culture modes. Furthermore, there were no differences in biological activity, including TNFα, FcγRIIIa, and C1q-binding affinity. Through a scale-up study from 3 L to 12,500 L, it was confirmed that cell performance and product quality could be maintained. In conclusion, product quality of the fed-batch process was comparable to that of the reference product.  相似文献   

20.
Bispecific protein scaffolds can be more complex than traditional monoclonal antibodies (MAbs) because two different sites/domains for epitope binding are needed. Because of this increased molecular complexity, bispecific molecules are difficult to express and can be more prone to physical and chemical degradation compared to MAbs, leading to higher levels of protein aggregates, clipped species, or modified residues in cell culture. In this study, we investigated cell culture performance for the production of three types of bispecific molecules developed at Amgen. In particular, we cultured a total of six CHO cell lines in both an approximately 12-day fed-batch process and an approximately 40-day high-density perfusion process. Harvested cell culture fluid from each process was purified and analyzed for product quality attributes including aggregate levels, clipped species, charge variants, individual amino acid modifications and host cell protein (HCP) content. Our studies showed that in average, the intensified perfusion process increased 15-fold the integrated viable cell density and the total harvested product (and fivefold the daily volumetric productivity) compared to fed-batch. Furthermore, bispecific product quality improved in perfusion culture (as analyzed in affinity-capture pools) with reduction in levels of aggregates (up to 72% decrease), clipped species (up to 75% decrease), acidic variants (up to 76% decrease), deamidated/isomerized species in complementarity-determining regions, and HCP (up to 84% decrease). In summary, the intensified perfusion process exhibited better productivity and product quality, highlighting the potential to use it as part of a continuous manufacturing process for bispecific scaffolds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号