共查询到18条相似文献,搜索用时 124 毫秒
1.
心房颤动与Kv1.5钾通道阻滞剂及其研究进展 总被引:1,自引:0,他引:1
心房颤动是临床常见的心律失常,药物是心房颤动的主要治疗方法。胺碘酮和心律平等药物虽然可以治疗和转复心房颤动,但长期应用会引起恶性心律失常和心脏外的副作用。抑制Kv1.5钾通道电流,可选择性延长心房肌动作电位时程及有效不应期,改善心房肌的电重构和组织重构。近年来关于Kv1.5钾通道及其阻滞剂的研究迅速发展并引起广泛关注。为进一步探讨Kv1.5钾通道是否可能成为心房颤动的治疗靶点,我们对目前相关研究进展作一综述。 相似文献
3.
细胞自噬是一种细胞自我降解的过程,在适应代谢应激、保持基因组完整性及维持内环境稳定方面发挥重要作用. 在肿瘤治疗中,凋亡耐受是产生肿瘤耐药的重要机制. 细胞自噬可防止抗肿瘤药诱导的凋亡,促进肿瘤耐药. 然而,自噬性细胞死亡可能是凋亡耐受肿瘤细胞的一种死亡方式. 因此,细胞自噬对肿瘤细胞的耐药性有双重影响. 本文综述了细胞自噬的分子机制、细胞自噬与凋亡的关系、细胞自噬与肿瘤耐药以及治疗的主要研究进展. 相似文献
4.
研究人巨细胞病毒(HCMV)感染对神经胶质瘤U87细胞自噬的影响。通过观察微管相关蛋白1轻链3(LC3)、自噬相关基因Beclin1及其蛋白表达的变化,从而探讨HCMV与神经胶质瘤发生、发展的关系及意义。用HCMV AD169(MOI=5)感染神经胶质瘤U87细胞,同时将未感染HCMV的U87细胞作为对照组。分别在6、12、24、48 h用RT-PCR检测Beclin1的表达,Western-blot和免疫荧光检测Beclin1和LC3编码蛋白的表达,最后用CCK-8检测细胞的增殖活性。结果显示,HCMV感染的U87细胞LC3-II蛋白表达水平逐渐下降(P<0.05);同时,HCMV感染的U87细胞Beclin1基因及蛋白的表达水平也逐渐下降(P<0.01),且HCMV感染U87细胞增殖显著(P<0.01)。以上结果表明,HCMV感染抑制胶质瘤U87细胞自噬,并会引起Beclin1表达水平下调,进而导致胶质瘤细胞增殖。 相似文献
5.
6.
自噬(Autophagy)是真核生物细胞中一类高度保守的、依赖于溶酶体或液泡途径对胞质蛋白和细胞器进行降解的生物学过程。细胞自噬除维持细胞稳态外,在细胞响应各种外界胁迫中也发挥重要作用。近年来,陆续发现浮游植物能够通过细胞自噬应答众多环境胁迫,并在浮游植物细胞中鉴定出了类似于哺乳动物细胞中的核心自噬功能单位。自噬作为一种独特的程序性细胞死亡(PCD)形式,对浮游植物遭受胁迫后的个体存活及种群延续具有至关重要的作用。因此,细胞自噬也将成为浮游植物研究领域的一个新的着力点。主要综述了浮游植物细胞中自噬的保守性、诱导因素、调控机制、自噬与凋亡的交互作用以及浮游植物自噬研究方法等研究进展。 相似文献
7.
自噬是广泛存在于真核细胞内的一种细胞分解自身构成成分的生命现象.细胞内的双层膜结构与溶酶体结合后其内包裹的受损、变形或衰老细胞器蛋白质等被水解酶类降解.细胞自噬具有多种生理功能,生命体借此维持蛋白质代谢平衡及细胞环境稳定,这一过程在细胞清除废物、结构重建、生长发育调节中发挥重要作用. 细胞自噬也与肿瘤的存活和死亡等过程密切相关. 近年来对细胞自噬的研究有了较大的深入,本文主要对自噬体的形态和发生过程及其分子机制、信号调节通路、自噬研究的检测方法,以及自噬与细胞凋亡和肿瘤发生的关系等方面进行概述,以期较全面地了解细胞自噬作用和最新研究动态. 相似文献
8.
9.
细胞自噬与病毒感染 总被引:1,自引:0,他引:1
自噬是广泛存在于真核细胞内的一种溶酶体依赖性降解途径,在维持细胞存活、更新、物质再利用和内环境稳定中起着重要作用。目前已经发现大量新的自噬相关基因,同时发现自噬在病毒感染过程中发挥着重要的抗病毒作用:自噬可以将胞质中的病毒转运到溶酶体中,降解病毒;也可以将病毒核酸转运至胞内感受器上激活天然免疫;还可以将病毒抗原递呈给MHCⅡ类分子激活适应性免疫。自噬参与胞内微生物感染具有双重作用。一方面,自噬能够降解入侵的微生物,即以异源吞噬(xenophagy)的方式清除胞内的病原体;另一方面,有些微生物能够通过某些机制逃避自噬而利于自身存活。本文就细胞自噬及其与不同病毒感染关系的最新研究进展进行综述。 相似文献
10.
11.
Mathur R Choi WS Eldstrom J Wang Z Kim J Steele DF Fedida D 《Biochemical and biophysical research communications》2006,342(1):1-8
We have previously reported that SAP97 enhancement of hKv1.5 currents requires an intact Kv1.5 N-terminus and is independent of the PDZ-binding motif at the C-terminus of the channel [J. Eldstrom, W.S. Choi, D.F. Steele, D. Fedida, SAP97 increases Kv1.5 currents through an indirect N-terminal mechanism, FEBS Lett. 547 (2003) 205-211]. Here, we report that an interaction between the two proteins can be detected under certain conditions but their interaction is irrelevant to the enhancement of channel expression. Instead, a threonine residue at position 15 in the hKv1.5 N-terminus is critically important. Mutation of this residue, which lies within a consensus site for phosphorylation by protein kinase C, to an alanine, completely abrogated the effect of SAP97 on channel expression. Although we were unable to detect phosphorylation of this residue, specific inhibition of kinase C by Calphostin C eliminated the increase in wild-type hKv1.5 currents associated with SAP97 overexpression suggesting a role for this kinase in the response. 相似文献
12.
Nielsen NH Winkel BG Kanters JK Schmitt N Hofman-Bang J Jensen HS Bentzen BH Sigurd B Larsen LA Andersen PS Haunsø S Kjeldsen K Grunnet M Christiansen M Olesen SP 《Biochemical and biophysical research communications》2007,354(3):776-782
Mutations in one of the ion channels shaping the cardiac action potential can lead to action potential prolongation. However, only in a minority of cardiac arrest cases mutations in the known arrhythmia-related genes can be identified. In two patients with arrhythmia and cardiac arrest, we identified the point mutations P91L and E33V in the KCNA5 gene encoding the Kv1.5 potassium channel that has not previously been associated with arrhythmia. We functionally characterized the mutations in HEK293 cells. The mutated channels behaved similarly to the wild-type with respect to biophysical characteristics and drug sensitivity. Both patients also carried a D85N polymorphism in KCNE1, which was neither found to influence the Kv1.5 nor the Kv7.1 channel activity. We conclude that although the two N-terminal Kv1.5 mutations did not show any apparent electrophysiological phenotype, it is possible that they may influence other cellular mechanisms responsible for proper electrical behaviour of native cardiomyocytes. 相似文献
13.
Shuying Shen Yi Zhang Zhen Wang Rui Zhang Xingguo Gong 《International journal of biological sciences》2014,10(2):212-224
Malignant gliomas are common primary tumors of the central nervous system. The prognosis of patients with malignant glioma is poor in spite of current intensive therapy and thus novel therapeutic modalities are necessary. Bufalin is the major component of Chan-Su (a traditional Chinese medicine) extracts from the venom of Bufo gargarizan. In this study, we evaluated the growth inhibitory effect of bufalin on glioma cells and explored the underlying molecular mechanisms. Our results showed that bufalin inhibited the growth of glioma cells significantly. Mechanistic studies demonstrated that bufalin induced apoptosis through mitochondrial apoptotic pathway. In addition, bufalin was also found to induce ER stress-mediated apoptosis, which was supported by the up- regulation of ER stress markers, CHOP and GRP78, and augmented phosphorylation of PERK and eIF2α as well as cleavage of caspase-4. Downregulation of CHOP using siCHOP RNA attenuated bufalin-induced apoptosis, further confirming the role of ER stress response in mediating bufalin-induced apoptosis. Evidence of bufalin-induced autophagy included formation of the acidic vesicular organelles, increase of autophagolysosomes and LC3-II accumulation. Further experiments showed that the mechanism of bufalin-induced autophagy associated with ATP deleption involved an increase in the active form of AMPK, decreased phosphorylation levels of mTOR and its downstream targets 4EBP1 and p70S6K1. Furthermore, TUDC and silencing of eIF2α or CHOP partially blocked bufalin-induced accumulation of LC3-II, which indicated that ER stress preceded bufalin-induced autophagy and PERK/eIF2α/CHOP signaling pathway played a major part in the process. Blockage of autophagy increased expression of ER stress associated proteins and the ratio of apoptosis, indicating that autophagy played a cytoprotective role in bufalin induced ER stress and cell death. In conclusion, bufalin inhibits glioma cell growth and induces interplay between apoptosis and autophagy through endoplasmic reticulum stress. It will provide molecular bases for developing bufalin into a drug candidate for the treatment of maglinant glioma. 相似文献
14.
Tanabe Y Hatada K Naito N Aizawa Y Chinushi M Nawa H Aizawa Y 《Biochemical and biophysical research communications》2006,345(3):1116-1121
BACKGROUND: Genetically abnormal action potential duration (APD) can be a cause of arrhythmias that include long and short QT interval syndrome. PURPOSE: The aim of this study was to evaluate the arrhythmogenic effect of short QT syndrome induced by the over-expression of Kv1.5 in rat. METHODS: From Sprague-Dawley rats on fetal days 18-19, cardiomyocytes were excised and cultured with and without transfection with the Kv-1.5 gene using an adenovirus vector. The expression of Kv1.5 was proven by immunohistochemistry and Western blot analysis. In the culture dish and in the whole cells, the electrical activities were recorded using the whole-cell patch-clamp technique and the effects of 4-AP and verapamil were tested. RESULTS: After transfection with Kv1.5 for 12h, immunohistochemical staining and Western blot analysis were positive for Kv1.5 while they were negative in the control transfected with only Lac-Z. In the culture dish, the myocytes showed spontaneous beating at 115beats/min (bpm) just prior to the transfection with Kv1.5 and increased to 367bpm at 24h. The control myocytes showed stable beating rates during culturing. 4-AP at 200microM slowed down the rate and verapamil abolished the beating. In the whole cells, the maximal resting membrane potential was slightly depolarized and APD was extremely abbreviated both at 50% and 90% of repolarization compared with those of the control. Rapid spontaneous activities were found in a single myocyte with Kv1.5 transfection and 4-AP slowed down the frequency of the activities with a reversal of the shortened APD. CONCLUSION: The over-expression of Kv1.5 induced short APD and triggered activities in rat cardiomyocytes. This model can be used to study the arrhythmogenic substrate of short QT syndrome. 相似文献
15.
We characterized the effects of intracellular Mg2+ (Mg2+i) on potassium currents mediated by the Kv1.5 and Kv2.1 channels expressed in Xenopus oocytes. Increase in Mg2+i caused a voltage-dependent block of the current amplitude, apparent acceleration of the current kinetics (explained by a corresponding shift in the steady-state activation) and leftward shifts in activation and inactivation dependencies for both channels. The voltage-dependent block was more potent for Kv2.1 [dissociation constant at 0 mV, Kd(0), was ~70 mM and the electric distance of the Mg2+ binding site, , was 0.2] than for the Kv1.5 channel [Kd(0)~40 mM and =0.1]. Similar shifts in the voltage-dependent parameters for both channels were described by the Gouy-Chapman formalism with the negative charge density of 1 e–/100 Å2. Additionally, Mg2+i selectively reduced a non-inactivating current and increased the accumulation of inactivation of the Kv1.5, but not the Kv2.1 channel. A potential functional role of the differential effects of Mg2+i on the Kv channels is discussed. 相似文献
16.
Villalonga N Escalada A Vicente R Sánchez-Tilló E Celada A Solsona C Felipe A 《Biochemical and biophysical research communications》2007,352(4):913-918
Voltage-dependent K(+) (Kv) channels are involved in the immune response. Kv1.3 is highly expressed in activated macrophages and T-effector memory cells of autoimmune disease patients. Macrophages are actively involved in T-cell activation by cytokine production and antigen presentation. However, unlike T-cells, macrophages express Kv1.5, which is resistant to Kv1.3-drugs. We demonstrate that mononuclear phagocytes express different Kv1.3/Kv1.5 ratios, leading to biophysically and pharmacologically distinct channels. Therefore, Kv1.3-based treatments to alter physiological responses, such as proliferation and activation, are impaired by Kv1.5 expression. The presence of Kv1.5 in the macrophagic lineage should be taken into account when designing Kv1.3-based therapies. 相似文献
17.
《Bioorganic & medicinal chemistry letters》2014,24(5):1269-1273
A series of lactam sulfonamides has been discovered and optimized as inhibitors of the Kv1.5 potassium ion channel for treatment of atrial fibrillation. In vitro structure–activity relationships from lead structure C to optimized structure 3y are described. Compound 3y was evaluated in a rabbit PD-model and was found to selectively prolong the atrial effective refractory period at submicromolar concentrations. 相似文献
18.
The presence of Kv1.3 voltage-gated potassium channels in rat and human prostate epithelial cells has been previously reported.
We examined, by immunohistochemistry, Kv1.3 levels in 10 normal human prostate, 18 benign prostatic hyperplasia (BPH) and
147 primary human prostate cancer (Pca) specimens. We found high epithelial expression of Kv1.3 in all normal prostate, 16
BPH and 77 (52%) Pca specimens. Compared to normal, Kv1.3 levels were reduced in 1 (6%) BPH specimen and in 70 (48%) Pca specimens.
We found a significant inverse correlation between Kv1.3 levels and tumor grade (r = −0.25, P = 0.003) as well as tumor stage (r = −0.27, P = 0.001). Study of an additional 30 primary Pca specimens showed that 15 (50%) had reduced Kv1.3 immunostaining compared
to matched normal prostate tissue. Our data suggest that in Pca reduced Kv1.3 expression occurs frequently and may be associated
with a poor outcome. 相似文献