首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 78 毫秒
1.
暴露在低氧环境下,可能会引起胃肠功能障碍和摄食量下降,打破骨骼肌蛋白质合成和分解平衡,造成骨骼肌萎缩。为探讨低氧环境下骨骼肌的萎缩是低氧环境引起的还是低氧诱发的摄食量减少所致,本研究检测大鼠腓肠肌中低氧时蛋白质合成与分解相关基因的蛋白质表达。将21只雄性SD大鼠,随机分为3组:常氧对照组、低氧组(氧浓度为12.4%,模拟海拔4 000 m高度)和配对组(大鼠的摄食量与低氧组前1 d的摄食量相同),每组7只,每天记录大鼠体重和摄食量。4周后,HE染色法观察腓肠肌肌纤维形态,Western印迹测试相关蛋白质水平。低氧组和配对组摄食量在低氧干预初期,较常氧对照组有显著性下降(P<0.05),干预后期差异不明显;干预期间,低氧组大鼠体重平均增加量(102.10 g)、体重(341.20 ± 16.75 g)、肌肉总量(226.83 ± 8.33 g)和腓肠肌肌纤维横截面积(12.67 ± 1.83 mm)较常氧对照组(128.00 g;377.50 ± 20.75 g;260.50 ± 9.35 g;15.78 ± 2.38 mm)和配对组(119.40 g;375.86 ± 11.30 g;262.29 ± 7.90 g;15.71 ± 2.82 mm)均显著下降,配对组较常氧对照组无显著性差异;4周干预后,与常氧对照组相比,低氧组大鼠腓肠肌中与低氧相关的HIF1α显著增加(1.42 ± 0.19, P<0.05),Akt和p-Akt/Akt显著降低 (1.44 ± 0.13; 0.47 ± 0.08, P<0.05),配对组上述3种指标相对表达量均无显著性差异;在蛋白质合成方面,低氧组mTOR较常氧对照组显著下降(0.63 ± 0.18, P<0.05),配对组较常氧对照组差异不明显;低氧组腓肠肌中,4EBP1(1.14 ± 0.14)和p70S6K1(1.14 ± 0.11)较配对组显著下降(P<0.05)。在蛋白质分解方面,低氧组p-FoxO1和p-FoxO1/FoxO1比值较常氧对照组显著下降(0.71 ± 0.15; 0.78 ± 0.14, P<0.05);低氧组大鼠腓肠肌中,Atrogin1、MuRF1、Beclin1、LC3Ⅰ及LC3Ⅱ/Ⅰ比值均高于常氧对照组(1.35 ± 0.12; 1.30 ± 0.22; 1.17 ± 0.11; 1.03 ± 0.11; 1.35 ± 0.13, P<0.05);配对组与常氧对照组间无明显差异。低氧环境下骨骼肌中蛋白质合成相关基因表达减少,蛋白质分解相关基因表达增加,造成骨骼肌萎缩,体重下降,此变化与摄食量减少无关。  相似文献   

2.
暴露在低氧环境下,可能会引起胃肠功能障碍和摄食量下降,打破骨骼肌蛋白质合成和分解平衡,造成骨骼肌萎缩。为探讨低氧环境下骨骼肌的萎缩是低氧环境引起的还是低氧诱发的摄食量减少所致,本研究检测大鼠腓肠肌中低氧时蛋白质合成与分解相关基因的蛋白质表达。将21只雄性SD大鼠,随机分为3组:常氧对照组、低氧组(氧浓度为12.4%,模拟海拔4 000 m高度)和配对组(大鼠的摄食量与低氧组前1 d的摄食量相同),每组7只,每天记录大鼠体重和摄食量。4周后,HE染色法观察腓肠肌肌纤维形态,Western印迹测试相关蛋白质水平。低氧组和配对组摄食量在低氧干预初期,较常氧对照组有显著性下降(P<0.05),干预后期差异不明显;干预期间,低氧组大鼠体重平均增加量(102.10 g)、体重(341.20 ± 16.75 g)、肌肉总量(226.83 ± 8.33 g)和腓肠肌肌纤维横截面积(12.67 ± 1.83 mm)较常氧对照组(128.00 g;377.50 ± 20.75 g;260.50 ± 9.35 g;15.78 ± 2.38 mm)和配对组(119.40 g;375.86 ± 11.30 g;262.29 ± 7.90 g;15.71 ± 2.82 mm)均显著下降,配对组较常氧对照组无显著性差异;4周干预后,与常氧对照组相比,低氧组大鼠腓肠肌中与低氧相关的HIF1α显著增加(1.42 ± 0.19, P<0.05),Akt和p-Akt/Akt显著降低 (1.44 ± 0.13; 0.47 ± 0.08, P<0.05),配对组上述3种指标相对表达量均无显著性差异;在蛋白质合成方面,低氧组mTOR较常氧对照组显著下降(0.63 ± 0.18, P<0.05),配对组较常氧对照组差异不明显;低氧组腓肠肌中,4EBP1(1.14 ± 0.14)和p70S6K1(1.14 ± 0.11)较配对组显著下降(P<0.05)。在蛋白质分解方面,低氧组p-FoxO1和p-FoxO1/FoxO1比值较常氧对照组显著下降(0.71 ± 0.15; 0.78 ± 0.14, P<0.05);低氧组大鼠腓肠肌中,Atrogin1、MuRF1、Beclin1、LC3Ⅰ及LC3Ⅱ/Ⅰ比值均高于常氧对照组(1.35 ± 0.12; 1.30 ± 0.22; 1.17 ± 0.11; 1.03 ± 0.11; 1.35 ± 0.13, P<0.05);配对组与常氧对照组间无明显差异。低氧环境下骨骼肌中蛋白质合成相关基因表达减少,蛋白质分解相关基因表达增加,造成骨骼肌萎缩,体重下降,此变化与摄食量减少无关。  相似文献   

3.
4.
RNA结合模体蛋白3 (RNA binding motif protein 3, RBM3) 受低温应激产生,参与介导亚低温的神经保护功能,但其作用机制及其下游靶分子尚不清楚。本研究构建了人RBM3基因的重组表达质粒,运用一种新型的、非放射性方法即翻译表面感应 (surface sensing of translation, SUnSET) 来检测RBM3过表达对细胞总蛋白质合成(global protein synthesis, GPS)的影响。结果显示,RBM3过表达使细胞总蛋白质的合成水平上调23.7% (P < 0.001),这与RBM3过表达引发的真核翻译延伸因子2 (eukaryotic translation elongation factor 2, eEF2)及真核翻译起始因子2α (eukaryotic initiation factor 2α, eIF2α) 的活性增高相一致。对RBM3可能的下游靶基因内质网蛋白3 (reticulon 3,RTN3),以及Yes相关蛋白1 (Yes-associated protein 1,YAP1) 的表达进行分析。结果显示,RBM3使RTN3及YAP1在蛋白质水平的表达分别提高了51.7% (P < 0.01) 与43.3% (P < 0.01)。与蛋白质水平变化相比,RBM3使YAP1在mRNA水平上调了2.0倍 (P < 0.001),但对RTN3的mRNA表达未见显著影响。以上研究表明,SUnSET是一种稳定、可靠的细胞GPS的检测手段;RBM3可显著促进细胞GPS,且对其下游基因RTN3和YAP1存在靶向关系。本研究的结果为深入探讨RBM3的神经保护作用机制提供了理论基础。  相似文献   

5.
高原低氧环境会引起肌力下降和运动能力退化,而抗阻训练是刺激骨骼肌生长的重要手段,叉头转录因子1(fork head box protein O 1,FoxO1)在调控骨骼肌蛋白质分解通路中承担重要角色。为探究Akt-FoxO1通路是否参与抗阻训练抑制低氧诱导的骨骼肌萎缩,本研究构建低氧诱导骨骼肌萎缩的大鼠模型,并模拟海拔4 000 m低氧环境下(12.4% O2)进行抗阻训练,对比观察大鼠比目鱼肌和趾长伸肌湿重和横截面积,以及蛋白激酶B(protein kinase B,Akt)、叉头转录因子1、泛素蛋白连接酶1(muscle ring finger 1,MuRF1)的表达差异等。结果表明,低氧暴露导致大鼠趾长伸肌湿重显著下降,苏木精-伊红染色组织切片分析肌纤维横截面积、低氧环境下比目鱼肌横截面积明显下降,而低氧抗阻训练后趾长伸肌横截面积明显高于安静组。实时荧光定量PCR和蛋白质免疫印迹结果显示,低氧暴露后FoxO1和MuRF1基因表达明显上调,低氧下抗阻训练后发现,Akt基因表达明显上调而FoxO1、MuRF则明显下调。免疫荧光观察磷酸化FoxO1在细胞核内外表达情况,发现抗阻训练后FoxO1(S256)于细胞核外表达增强。上述结果表明,抗阻训练可以达到抑制低氧诱导骨骼肌萎缩的效果,Akt促进FoxO1磷酸化从而减缓骨骼肌蛋白质分解过程是抗阻训练能够抑制骨骼肌萎缩的分子机制之一。  相似文献   

6.
The mammalian target of rapamycin complex 1 (mTORC1) is a critical regulator of protein synthesis. The best studied targets of mTORC1 in translation are the eukaryotic initiation factor-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1). In this study, we identify the La-related protein 1 (LARP1) as a key novel target of mTORC1 with a fundamental role in terminal oligopyrimidine (TOP) mRNA translation. Recent genome-wide studies indicate that TOP and TOP-like mRNAs compose a large portion of the mTORC1 translatome, but the mechanism by which mTORC1 controls TOP mRNA translation is incompletely understood. Here, we report that LARP1 functions as a key repressor of TOP mRNA translation downstream of mTORC1. Our data show the following: (i) LARP1 associates with mTORC1 via RAPTOR; (ii) LARP1 interacts with TOP mRNAs in an mTORC1-dependent manner; (iii) LARP1 binds the 5′TOP motif to repress TOP mRNA translation; and (iv) LARP1 competes with the eukaryotic initiation factor (eIF) 4G for TOP mRNA binding. Importantly, from a drug resistance standpoint, our data also show that reducing LARP1 protein levels by RNA interference attenuates the inhibitory effect of rapamycin, Torin1, and amino acid deprivation on TOP mRNA translation. Collectively, our findings demonstrate that LARP1 functions as an important repressor of TOP mRNA translation downstream of mTORC1.  相似文献   

7.
Oral cancer, a type of head and neck cancer, can pose a significant risk of death unless diagnosed and treated early. Alternative treatments are urgently needed owing to the high mortality rate, limitations of conventional treatments, and many complications. The anthraquinone compound chrysophanol acts as a tumor suppressor on some types of cancer cells. To date, it has not been clarified how chrysophanol affects human tongue squamous carcinoma. This study was aimed to examine the effects of chrysophanol on oral cancer treatment. The results show that chrysophanol caused cell death, reduced the expression of the mammalian target of rapamycin (mTOR)/peroxisome proliferator-activated receptor-alpha (PPAR-α), and increased reactive oxygen species (ROS) production. We also used two ion chelators, deferoxamine (DFO) and liproxstatin-1 (Lipro), to further determine whether chrysophanol inhibits cell growth and regulates mTOR/PPAR-α expression and ROS production, both of which are involved in iron homeostasis. The results show that DFO and Lipro reversed the increase in cell death, downregulation of mTOR/PPAR-α, and decrease in ROS accumulation. In conclusion, chrysophanol inhibits the growth of oral squamous cell carcinoma cells by modulating mTOR/PPAR-α and by causing ROS accumulation.  相似文献   

8.
9.
Recombinant human erythropoietin (rhEPO) has been used clinically to alleviate cancer- and chemotherapy-related anemia. However, recent clinical trials have reported that rhEPO also may adversely impact disease progression and survival. The expression of functional EPO receptors (EPOR) has been demonstrated in many human cancer cells where, at least in vitro, rhEPO can stimulate cell growth and survival and may induce resistance to selected therapies.  相似文献   

10.
11.
Keyword index     
《Journal of neurochemistry》2003,87(6):1579-1582
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号