首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高晓萌  张治华 《遗传》2020,(1):45-56
生物大分子的相分离聚集(简称相分离)是驱动细胞内无膜细胞器形成的主要机制,参与众多生物学过程并和多种人类疾病密切相关,如神经退行性疾病等。近年来,研究人员围绕相分离现象的分子机制和生物学功能,发现了相分离与信号传导、染色质结构、基因表达、转录调控等一系列生物学过程存在紧密关联,为理解细胞命运决定和疾病发生提供了新的视角,为疾病治疗和新药研发开辟了新的可能途径。本文在回顾了相分离研究的发展过程、相分离现象在生物学中的应用,以及相分离与疾病的关系的基础上,重点分析了近年来相分离与染色质结构关联方面的研究突破,包括相分离如何感知并重塑染色质结构、超级增强子如何通过相分离调节基因表达、共转录激活因子如何通过相分离参与基因表达调控等,以期为进一步理解相分离与染色质空间结构的关系提供参考。  相似文献   

2.
细胞中存在种类繁多的无膜细胞器,在感知环境信号,基因表达调控,RNA加工等过程中发挥了重要的作用,而生物大分子相分离被证明是无膜细胞器形成的主要方式。文章介绍了生物大分子相分离的概念与特征,总结了有关相分离在植物对环境信号响应中的研究进展,并对相分离在植物中的生物学功能进行了分类,以期解析相分离在植物生长发育和逆境适应中的作用机理,揭示植物无膜细胞器的本质与功能。  相似文献   

3.
相分离是细胞内无膜细胞器动态组装的主要驱动力,参与多种生物学过程,成为近年来生命科学领域的研究热点。已有研究发现两类非编码RNA(non-coding RNA, ncRNA)与相分离密切相关,其中微小RNA(microRNA, miRNA)的加工受相分离的调节,并通过相分离诱导基因沉默。另一类长链非编码RNA(long non-coding RNA, lncRNA)可作为相分离行为的支架参与无膜细胞器形成、DNA损伤修复、胚层分化等生物学过程。本文综述了miRNA和lncRNA与相分离的关系,为重新审视细胞内ncRNA和相分离的组织模式和功能调控提供新的观点和研究思路。  相似文献   

4.
细胞区室化(compartmentation)有助于分隔不同的生化反应,使其相互不产生干扰。有膜细胞器是通过生物膜把细胞内不同的空间分隔,进而实现细胞区室化。研究发现,细胞区室化也会通过细胞中无膜细胞器实现,但核仁等无膜区室的形成机制一直未得到明确。“液-液相分离”(liquid-liquid phase separation, LLPS)机制的发现,为解开无膜区室的谜题提供了全新的思路。现在认为,多种蛋白质和RNA也是通过LLPS机制形成局部的高浓度冷凝物,发挥更强或独特的基因表达调控、细胞信号转导等功能。LLPS的形成主要依赖于蛋白质和/或核酸之间的多价态非共价键相互作用,主要包括由低复杂序列区域介导的相分离及由多个重复结构域间特异性作用介导的相分离。组分浓度、pH和翻译后修饰等条件均能改变分子多价相互作用的强度,从而调节相分离和相变过程。蛋白质相分离的失调与肌萎缩性侧索硬化症、阿尔茨海默病、亨廷顿舞蹈症和帕金森病等多种神经退行性疾病的发生有关。在这些退行性疾病中,已发现TDP-43、FUS、Ataxin-2、Tau蛋白等致病基因的突变,以及修饰会导致LLPS异常而形成病理特征性的...  相似文献   

5.
为了保证细胞内各种生化反应和调控过程的有序进行,细胞内存在一系列隔室将不同的生物分子分隔开来。这其中除了有膜细胞器,还存在一类无膜细胞器或无膜颗粒,使得具有特定功能的蛋白质和核酸在不同无膜颗粒中聚集,保证相应生化过程在特定时空条件下高效进行。大量的研究证据表明,液-液相分离(liquid-liquid phase separation, LLPS)是介导胞内无膜颗粒凝聚形成的重要机制。本文首先围绕相分离介绍了胞内无膜颗粒的形成机制;进一步总结部分胞内无膜颗粒的功能,以及相分离在其行使生理功能时发挥的重要作用;最后总结相分离数据库及其所常采信的实验方法,期望通过对胞内无膜颗粒形成机制、生物功能及相分离数据资源的总结,为初入领域的科研工作者提供参考,并推进高通量方法在相关领域研究的应用与发展。  相似文献   

6.
7.
细胞内生物大分子通过相分离形成凝聚体对复杂精细的生物化学反应进行调控,从而保证细胞生命活动高效有序地进行. RNA是细胞内丰度极高的生物大分子,在大部分凝聚体的形成和调控中起着关键作用. RNA自身可以发生相分离,也可以通过其电荷和结构等特征影响蛋白质的相分离.反之,蛋白质的相分离可以调节RNA的生成、代谢和功能等.因此,相分离为蛋白质-RNA生物大分子机器发挥功能提供新维度.本文对RNA与相分离的相互调控进行总结,并对未来相分离研究在RNA生物学中的作用提出展望.  相似文献   

8.
细胞为了维持正常的生理活动进化出膜系统,使各种各样的活动能在特定的空间、时间上高效有序的发生。膜系统参与物质运输、信号传递、能量代谢等过程已被广泛了解,但与无膜区室组装和功能相关的分子细节尚未研究透彻。生物大分子通过相分离在细胞内形成多种无膜区室,如核仁、中心体、应激颗粒等,这些无膜区室被统称为生物分子凝聚体。作为一种细胞生化反应的聚集分离机制,相分离在自然界中普遍存在,并广泛参与信号转导、基因转录调控等多种重要的生理过程。而异常的相分离与许多人类疾病密切相关,如神经退行性疾病、癌症及传染性疾病等。通过介绍相分离形成的细胞结构及功能、相分离发生的机制,进一步阐述相分离在疾病发生发展中的作用。  相似文献   

9.
生物大分子"液-液"相分离是近年来在生命科学领域迅速发展起来的新概念。相分离概念的提出,为我们深入理解细胞内生物大分子的组织模式和功能调控提供了新的观点和研究工具,因此迅速成为生命科学领域的研究前沿。但是围绕生物大分子相分离的生物物理学特性及其在细胞中扮演的角色仍有很多未解之谜。该文对近年来生物大分子相分离的相关研究进行了综述,对其在细胞中的功能和未来的发展趋势进行了初步探讨和展望。  相似文献   

10.
生物大分子的功能受细胞氧化还原环境影响和调控,细胞内氧化还原平衡的维持对于细胞的正常生长至关重要,与多种生理和病理过程密切相关。现将细胞内氧化还原平衡体系、氧化还原调控的主要信号通路及生物学过程、活性氧及活性氮通过蛋白质巯基修饰发挥生物学功能的分子机制,尤其是巯基亚硝基化修饰机制,以及还原应激效应的最新研究予以综述。  相似文献   

11.
长链非编码RNA (lncRNA)是转录本长度超过200个核苷酸的RNA分子,不具备蛋白质编码功能。细胞自噬是真核生物的一种高度保守、用来降解和循环再利用细胞内生物大分子或受损细胞器的过程,有助于维持机体内环境稳态。自噬研究是当下生命科学研究的热点,前期研究发现,lncRNA在细胞自噬调控中发挥着重要作用,深入探索lncRNA调控自噬的分子机制及其与疾病发生的关系对预防和治疗多种人类重大疾病具有重要意义。该文就目前为止报道过的部分lncRNA参与自噬调控的最新进展进行归纳总结,以期为lncRNA调控自噬的相关研究及其在肿瘤等疾病治疗中的作用提供参考。  相似文献   

12.
氨基酸是生物体内不可缺少的营养成分和生命活动最基本的物质之一,并对动物体的新陈代谢起到至关重要的作用。自噬是细胞内通过降解和回收细胞内生物大分子和受损细胞器,以完成本身代谢和某些细胞器更新的过程。研究证实氨基酸缺乏能诱导细胞自噬,而这种反应大部分是依赖于m TORC1信号通路的方式实现的,但总氨基酸或单体氨基酸调节细胞自噬的分子作用机制和自噬水平有很大差别,且相关方面的分子调节机制尚未完全清楚,需要进一步阐明。mi RNA是一类长度为18-24 nt的非编码核苷酸,参与细胞增殖、分化、自噬与凋亡等多种生命活动。研究表明mi RNA在氨基酸缺乏诱导细胞自噬过程中的也发挥重要调控机制。就不同氨基酸缺乏调控自噬相关机制加以综述,并探讨mi RNA在其中起到的关键作用。旨在为治疗自噬相关代谢提供思路。  相似文献   

13.
鲁宁  黄秉仁 《生命的化学》2001,21(5):386-389
细胞骨架由微丝、微管及中等纤维组成受不同蛋白因子调控以不同方式组装成不同直径的纤维 ,遍布于一切细胞 ,决定细胞的形状 ,赋予其抗压强度 ,对细胞器及大分子进行空间组织 ,实现胞内的能量转换。在肌动蛋白 (actin)组装成张力纤维和张力纤维解离成肌动蛋白单体过程中有多种蛋白因子参与调控 ,从而使细胞骨架处于一个生理的动态平衡中 ,执行和完成不同的生化反应。在众多的调控蛋白中 ,肌动蛋白集束调控蛋白因子 (actinbundlingprotein)不仅参与肌动蛋白结构调节 ,还与细胞内信号传导有密切关系。已发现的肌动蛋…  相似文献   

14.
钙/钙调蛋白依赖性丝氨酸蛋白激酶(calcium/calmodulin-dependent serine protein kinase, CASK)属于膜相关鸟苷酸激酶(membrane associated guanylate kinase, MAGUK)家族.CASK具有多个不同蛋白质结合结构域,在细胞膜的特定区域,与其他蛋白质形成多种蛋白质复合体,参与组成细胞骨架.它通过衔接细胞外信号蛋白和细胞内骨架蛋白,协助功能蛋白质的转运和定位,以及细胞内的信号传递.此外CASK还可以进入细胞核影响基因转录调控,以及作用在神经突触膜上参与神经递质的释放.  相似文献   

15.
细胞中的RNA和RNA结合蛋白质(RNA-binding proteins,RBPs)相互作用形成核糖核酸蛋白质(ribonucleoprotein,RNP)复合物。RNP复合物分布广泛,功能众多。蛋白质生物合成包括转录及其调控、mRNA加工转运、tRNA传递、翻译及其调控等,是核酸编码的遗传信息流向活性蛋白质的过程。多种RNA分子参与这一过程,有的与对应的RNA结合蛋白质形成RNP复合物。RNP复合物的多样性和重要功能在此得到了最好的体现。该文以其中起核心作用的RNA分子为主线,对蛋白质合成中的RNP复合物进行了综述。  相似文献   

16.
RNA根据其定位、结构、修饰以及与其他生物分子的动态相互作用,复杂而精确地执行丰富多彩的功能。RNA-蛋白质相互作用和RNA在细胞内定位的异常与多种疾病的发生发展密切相关。活细胞RNA标记和成像技术已成为研究RNA定位和运动、基因转录调控及RNA-蛋白质相互作用等生物学过程的有力工具。活细胞RNA标记和成像技术的开发已成为国际科学研究领域的热点。将目前存在的活细胞内RNA标记和成像技术方面的研究进展进行概述。  相似文献   

17.
细胞自噬是一种进化上保守的分解代谢过程,涉及细胞内长寿命蛋白和受损伤细胞器的降解,其在细胞内稳态、肿瘤、心力衰竭、衰老相关性疾病、神经退行性疾病以及传染病等多种生命进程中发挥着重要作用。泛素样蛋白系统、m TOR信号通路、micro RNA、caspase等均参与了细胞自噬调控过程。该文综述了细胞自噬过程、功能和分子调控机制的研究进展,以期有助于研究细胞自噬机理,为治疗心脏疾病(如动脉粥样硬化)、癌症(如乳腺癌)等提供理论基础。  相似文献   

18.
真核细胞内多种无膜及有膜细胞器为各种生物学过程的发生提供场所.被膜细胞器通过它们之间的膜接触位点所进行的信息交流和物质交换是维持生命活动所必需的.绘制活细胞中细胞器或膜接触位点等处的蛋白质组图谱,将有助于解析这些部位的生物学功能及作用机制,并为研究细胞器相互作用提供基础.但由于无膜细胞器或膜接触位点很难分离纯化,传统的生化方法难以系统解析其中的蛋白质组.最近报道的几种基于酶类的蛋白质邻近标记技术,则为系统分析上述空间受限的蛋白质组这一难题提供了有效的解决方案.通过将能催化产生活性自由基(最常见的是生物素及其衍生物的自由基)的酶连接到目标蛋白上,可对其邻近的蛋白质组进行共价标记,从而使后者的分离和鉴定成为可能,并可以运用于活细胞中的动态标记.我们在此综述了几种最新的邻近标记策略的原理及应用,并对它们的优势与局限性进行了比较,以期为细胞器互作的蛋白质组学研究提供参考.  相似文献   

19.
钙/钙调蛋白依赖性丝氨酸蛋白激酶的结构和功能   总被引:2,自引:0,他引:2       下载免费PDF全文
钙/钙调蛋白依赖性丝氨酸蛋白激酶(calcium/calmodulin-dependent serine protein kinase, CASK)属于膜相关鸟苷酸激酶(membrane associated guanylate kinase, MAGUK)家族.CASK具有多个不同蛋白质结合结构域,在细胞膜的特定区域,与其他蛋白质形成多种蛋白质复合体,参与组成细胞骨架.它通过衔接细胞外信号蛋白和细胞内骨架蛋白,协助功能蛋白质的转运和定位,以及细胞内的信号传递.此外CASK还可以进入细胞核影响基因转录调控,以及作用在神经突触膜上参与神经递质的释放.  相似文献   

20.
RNA结合蛋白(RNA binding proteins,RBPs)是一类通过其RNA结合结构域与RNA相互作用的蛋白质,在细胞内发挥着非常重要的作用。RBPs参与从RNA代谢(包括RNA的可变剪接、稳定性、翻译)到表观遗传修饰等多种调控途径。已有大量文献报道转录因子、表观遗传修饰和细胞外信号通路参与调控干细胞的多能性维持、分化和体细胞重编程,但对于RBPs在细胞命运转变中作用的研究报道甚少。该文主要综述了RBPs通过调控RNA的可变剪接、mRNA稳定性、翻译水平、microRNA代谢及组蛋白修饰进而调控干细胞多能性维持和体细胞重编程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号