首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
肿瘤坏死因子受体超家族 (tumor necrosis factor receptor superfamily, TNFRSF) 是细胞因子受体的一个蛋白质超家族,其显著特征是通过细胞外富含半胱氨酸结构域结合肿瘤坏死因子(tumor necrosis factor,TNF)。肿瘤坏死因子受体(tumor necrosis factor receptors,TNFRs)是古老的细胞因子,TNFRs同源基因最早可追溯到节肢动物果蝇中。TNFRs在炎症反应、细胞凋亡、淋巴细胞稳态和组织发育中发挥重要的作用,TNFRs最主要的功能是与免疫系统相关。鉴于其在免疫系统中发挥重要的作用,肿瘤坏死因子受体家族成员已成为治疗糖尿病、动脉粥样硬化、骨质疏松、自身免疫性疾病、移植排斥反应和癌症等人类疾病的靶点。随着科学技术发展,关于TNFRs的功能有了新的进展,在无脊椎动物和低等脊椎动物中已经有大量报道。在本篇综述中,主要总结了在高等哺乳动物中发现的29种TNFR成员的相关报道,包括8种死亡受体和21种非死亡受体,主要涉及在免疫系统以及与疾病相关领域的研究。大多数研究处于基础实验阶段,少数走向临床研究的案例取得的临床效果并不理想,靶向设计针对自身免疫性疾病、炎症和肿瘤疾病的治疗方案需要更深入的理解TNFRs功能。本文旨在对TNFRs成员发挥的功能有进一步的认识。  相似文献   

2.
NF-κB(核因子κ增强子结合蛋白)是核转录因子家族成员,具有调节免疫、炎症和细胞存活的功能.它可被TRAF2(tumor necrosis factor receptor associated factor 2,肿瘤坏死因子受体相关因子2)等相关因子活化.TRAF2包含了N-端的环指结构域和C-端的高度保守结构域.它通过与肿瘤坏死因子受体超家族成员相互作用,介导了下游信号通路.而TRAF2的泛素化在过程中是关键的,鞘磷脂作为TRAF2的泛素化连接酶辅助因子,在TRAF2介导的NF-κB信号通路中发挥重要作用.  相似文献   

3.
肿瘤坏死因子受体相关因子2(tumor necrosis factor receptor-associated factor 2,TRAF2)是一种重要的胞内信号接头蛋白,参与激活NF-κB和MAPK信号通路,在免疫防御、炎症反应和细胞凋亡等过程发挥关键作用.为了探索杂交鳢(Channa maculate ♀ x Ch...  相似文献   

4.
死亡受体DR5(death receptor 5)属于肿瘤坏死因子受体(tumor necrosis factor receptor,TNFR)超家族的成员,其胞质区部分含有死亡结构域(death domain,DD),广泛分布于各种肿瘤细胞和正常组织细胞的膜上.配体TRAIL与肿瘤细胞表面的DR5结合,可诱导大多数肿瘤凋亡,而对正常的组织几乎没有作用.近年来死亡受体DR5与细胞凋亡的关系已成为研究热点之一,对DR5介导细胞凋亡的机制和应用进展作一综述.  相似文献   

5.
以TRAIL为靶点的肿瘤治疗研究进展   总被引:4,自引:0,他引:4  
林海  侯敢  黄迪南 《生命科学》2007,19(5):492-495
肿瘤坏死因子相关凋亡配体(tumor necrosis factor-related apoptosis-inducing ligand,TRAIL)是肿瘤坏死因子(tumor necrosis factor,TNF)超家族成员。TRAIL与其受体结合后启动凋亡信号转导,选择性地诱导肿瘤细胞凋亡,而对正常组织细胞没有明显的伤害,而且一些药物和细胞因子可协同TRAIL诱导肿瘤细胞凋亡。本文就TRAIL及其受体、TRAIL诱导凋亡的机制以及影响凋亡的因素和途径,以TRAIL为靶点的肿瘤治疗的研究现状作一综述。  相似文献   

6.
炎症性肠病(inflammatory bowel disease,IBD)的发病机制至今尚不明确,近年来研究发现,肿瘤坏死因子超家族(tumor necrosis factor super family,TNFSF)参与了炎症性肠病的发病过程。其中,肿瘤坏死因子样配体1A(TNFliked ligand 1A,TL1A)与其受体DR3(death receptor 3)在肠道免疫炎症反应的多个环节中发挥重要作用。本文就TL1A/DR3在炎症性肠病发病机制中的研究进展作一综述。  相似文献   

7.
Fas介导细胞凋亡及相关免疫调节作用   总被引:4,自引:0,他引:4  
Fas/CD95作为肿瘤坏死因子(TNF)/神经生长因子(NGF)分子受体超家族成员,在细胞凋亡及体内免疫调节方面发挥重要的作用。细胞在接收到经Fas传递的凋亡信号后,主要经胞浆caspase和线粒体两种途径引发细胞程序性死亡。Fas介导T/B淋巴细胞的凋亡,在这些细胞的早期分化发育和维持机体免疫平衡中起主要作用。CTL和NK等杀伤细胞也通过Fas-FasL介导的细胞凋亡而发挥对靶细胞的杀伤效应。因此,Fas-FasL系统在肿瘤、自身免疫性疾病、艾滋病等疾病过程中发挥重要的作用。  相似文献   

8.
肿瘤坏死因子α诱导蛋白8(tumor necrosis factor alpha induced protein-8,TNFAIP8)作为TNFAIP8家族的成员之一,被认为是一种具有抗凋亡和促肿瘤效应的蛋白分子,在细胞的存活和死亡中发挥重要作用。本文重点介绍TNFAIP8的发现过程、结构功能、生物学效应及其临床意义,并对其可能的作用机制进行概述。  相似文献   

9.
肿瘤坏死因子-α诱导蛋白8样分子2(tumor necrosis factor-α-induced protein 8-like 2,TIPE2)是一种新型的先天免疫和细胞免疫的调节因子。TIPE2负向调节Toll样受体和T细胞受体的功能,其在免疫系统的选择性表达可抑制炎症反应并维持免疫稳态。大量研究表明,TIPE2是多种肿瘤生成和肿瘤免疫平衡动态调节的负性调节分子,是自然杀伤(natural killer,NK)细胞成熟和抗肿瘤免疫的潜在检查点。TIPE2在炎症、免疫相关疾病和肿瘤的发生发展过程中起重要作用,具有作为临床生物标志物的潜力。本文总结了TIPE2的结构特点、生物学功能及其在疾病中的异常表达和临床意义,为疾病治疗提供新的策略。  相似文献   

10.
肿瘤坏死因子α诱导蛋白8(tumor necrosis factor alpha induced protein-8,TNFAIP8)作为TNFAIP8家族的成员之一,被认为是一种具有抗凋亡和促肿瘤效应的蛋白分子,在细胞的存活和死亡中发挥重要作用。本文重点介绍TNFAIP8的发现过程、结构功能、生物学效应及其临床意义,并对其可能的作用机制进行概述。  相似文献   

11.
The family of tumor necrosis factor receptors (TNFRs) and their ligands form a regulatory signaling network that controls immune responses. Various members of this receptor family respond differently to the soluble and membrane-bound forms of their respective ligands. However, the determining factors and underlying molecular mechanisms of this diversity are not yet understood. Using an established system of chimeric TNFRs and novel ligand variants mimicking the bioactivity of membrane-bound TNF (mTNF), we demonstrate that the membrane-proximal extracellular stalk regions of TNFR1 and TNFR2 are crucial in controlling responsiveness to soluble TNF (sTNF). We show that the stalk region of TNFR2, in contrast to the corresponding part of TNFR1, efficiently inhibits both the receptor's enrichment/clustering in particular cell membrane regions and ligand-independent homotypic receptor preassembly, thereby preventing sTNF-induced, but not mTNF-induced, signaling. Thus, the stalk regions of the two TNFRs not only have implications for additional TNFR family members, but also provide potential targets for therapeutic intervention.  相似文献   

12.
Deng GM  Zheng L  Chan FK  Lenardo M 《Nature medicine》2005,11(10):1066-1072
Tumor necrosis factor (TNF)-alpha has an important role in the pathogenesis of autoimmune and inflammatory diseases such as rheumatoid and septic arthritis. The biological effects of TNF-alpha are mediated by binding to TNF receptors TNFR1 (also known as P60) or TNFR2 (also known as P80). The pre-ligand assembly domain (PLAD) is a portion of the extracellular region of TNFRs that mediates receptor-chain association essential for signaling. We found that soluble versions of PLAD, especially those derived from P60, block the biochemical effects of TNF-alpha in vitro and potently inhibit arthritis in animal models. Thus, targeting the PLAD may have clinical value in the treatment of human arthritis and other disorders involving receptors of the TNFR superfamily.  相似文献   

13.
Cytokines and chemokines play a critical role in both the innate and acquired immune responses and constitute prime targets for pathogen sabotage. Molecular mimicry of cytokines and cytokine receptors is a mechanism encoded by large DNA viruses to modulate the host immune response. Three tumor necrosis factor receptors (TNFRs) have been identified in the poxvirus cowpox virus. Here we report the identification and characterization of a fourth distinct soluble TNFR, named cytokine response modifier E (CrmE), encoded by cowpox virus. The crmE gene has been sequenced in strains of the orthopoxviruses cowpox virus, ectromelia virus, and camelpox virus, and was found to be active in cowpox virus. crmE is expressed as a secreted 18-kDa protein with TNF binding activity. CrmE was produced in the baculovirus and vaccinia virus expression systems and was shown to bind human, mouse, and rat TNF, but not human lymphotoxin alpha, conjugates of lymphotoxins alpha and beta, or seven other ligands of the TNF superfamily. However, CrmE protects cells only from the cytolytic activity of human TNF. CrmE is a new member of the TNFR superfamily which is expressed as a soluble molecule that blocks the binding of TNF to high-affinity TNFRs on the cell surface. The remarkable finding of a fourth poxvirus-encoded TNFR suggests that modulation of TNF activity is complex and represents a novel viral immune evasion mechanism.  相似文献   

14.
Biological functions of tumor necrosis factor cytokines and their receptors   总被引:18,自引:0,他引:18  
Tumor necrosis factor (TNF; formerly known as TNFalpha) and lymphotoxin (LT)alpha, originally characterized by their ability to induce tumor cell apoptosis and cachexia, are now considered as central mediators of a broad range of biological activities. These activities encompass beneficial effects for the host in inflammation and in protective immune responses against a variety of infectious pathogens. TNF family members on the other hand also exert host-damaging effects in sepsis, in tumor cachexia as well as in autoimmune diseases. In addition, the essential roles of the core members of the TNF superfamily, LTalpha, LTbeta, TNF, and LIGHT as well as their receptors during the organogenesis of secondary lymphoid organs and the maintenance of the architecture of lymphatic tissues now becomes appreciated. The elucidation of the biological functions of these cytokines and their specific cell surface receptors has been crucially advanced by the study of gene-targeted mouse strains. This presentation summarizes the roles of TNFR and TNF-like cytokines in infection, sepsis and autoimmunity as well as the pivotal involvement of these molecules in the development of secondary lymphoid organs.  相似文献   

15.
The TNF-TNF receptor system   总被引:6,自引:0,他引:6  
Different forms of tumor necrosis factor (TNF) interact with two specific receptors for TNF (TNFR) on the cell membrane to induce a variety of effects. While sharing structural similarities in their extracellular domains, the two TNFRs differ in their intracellular domain, their signal transduction, and consequently their function. In addition, one of the two TNFRs can be expressed in two differently located isoforms. This makes the TNF-TNFR system very complex. The dual TNF function for either cell death or survival upon interaction of members of the TNF ligand family with members of the TNF receptor family will be discussed.  相似文献   

16.
Tumour necrosis factor alpha (TNF alpha) is an important cytokine in immune regulation and resistance to various micro-organisms. It provides signals to the target cells through two different receptors: TNFR1 and TNFR2. The present report reviews the role of TNF receptors (TNFRs) in the immune response against protozoan parasite infections of medical interest (Toxoplasma gondii, Leishmania major, Trypanosoma cruzi, Plasmodium spp.). TNF alpha has been regarded as a modulator cytokine in host defence against protozoans infections and recent findings on experimental gene-deficient mice have showed that TNF alpha/TNFRs pathway may be beneficial for host protection during these infections.  相似文献   

17.
Chan FK 《Cytokine》2007,37(2):101-107
The tumor necrosis factor (TNF) family of cytokines and their receptors regulates many areas of metazoan biology. Specifically, this cytokine-receptor family plays crucial roles in regulating myriad aspects of immune development and functions. Disruption of ligand-receptor interaction or downstream signal transduction components in the TNF family often leads to pathological conditions. Historically, members of the TNF receptor family (TNFRs) were thought to exist as monomeric receptor chains prior to stimulation. Binding of the trimeric ligand then induces the trimerization of the receptors and activation of downstream signaling. However, recent evidence indicates that many TNFRs exist as pre-assembled oligomers on the cell surface. Pre-ligand assembly of TNFR oligomers is mediated by the pre-ligand assembly domain (PLAD), which resides within the membrane distal cysteine-rich domain of the receptors. Growing evidence indicates that PLAD-mediated receptor association regulates cellular responses to TNF-like cytokines, especially in cells of the immune system. Thus, targeting pre-ligand assembly may offer new possibilities for therapeutic intervention in different pathological conditions involving TNF-like cytokines.  相似文献   

18.
The tumor necrosis factor (TNF) and TNF receptor (TNFR) superfamilies comprise multidomain proteins with diverse roles in cell activation, proliferation and cell death. These proteins play pivotal roles in the initiation, maintenance and termination of immune responses and have vital roles outside the immune system. The discovery and analysis of diseases associated with mutations in these families has revealed crucial mechanistic details of their normal functions. This review focuses on mutations causing four different diseases, which represent distinct pathological mechanisms that can exist within these superfamilies: autoimmune lymphoproliferative syndrome (ALPS; FAS mutations), common variable immunodeficiency (CVID; TACI mutations), tumor necrosis factor receptor associated periodic syndrome (TRAPS; TNFR1 mutations) and hypohidrotic ectodermal dysplasia (HED; EDA1/EDAR mutations). In particular, we highlight how mutations have revealed information about normal receptor-ligand function and how such studies might direct new therapeutic approaches.  相似文献   

19.
Regulatory roles and molecular signaling of TNF family members in osteoclasts   总被引:12,自引:0,他引:12  
Feng X 《Gene》2005,350(1):1-13
The tumor necrosis factor (TNF) family has been one of the most intensively studied families of proteins in the past two decades. The TNF family constitutes 19 members that mediate diverse biological functions in a variety of cellular systems. The TNF family members regulate cellular functions through binding to membrane-bound receptors belonging to the TNF receptor (TNFR) family. Members of the TNFR family lack intrinsic kinase activity and thus they initiate signaling by interacting intracellular signaling molecules such as TNFR associated factor (TRAF), TNFR associated death domain (TRADD) and Fas-associated death domain (FADD). In bone metabolism, it has been shown that numerous TNF family members including receptor activator of nuclear factor kappaB ligand (RANKL), TNF-alpha, Fas ligand (FasL) and TNF-related apoptosis-inducing ligand (TRAIL) play pivotal roles in the differentiation, function, survival and/or apoptosis of osteoclasts, the principal bone-resorbing cells. These TNF family members not only regulate physiological bone remodeling but they are also implicated in the pathogenesis of various bone diseases such as osteoporosis and bone loss in inflammatory conditions. This review will focus on our current understanding of the regulatory roles and molecular signaling of these TNF family members in osteoclasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号