首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
锌指核酸酶、类转录激活因子式核酸酶和CRISPR/Cas技术是近几年发展起来的3种主要基因组编辑技术,其原理都是通过在生物基因组特定位点制造DNA双链断裂损伤,从而激活机体自身的DNA损伤修复机制,在此过程中引发各种变异。基因组编辑技术已在研究基因功能和基因修复中成功应用,基于基因组编辑技术的诸多优点,如CRISPR/Cas技术能对基因组中多个特定位点进行编辑,其有望成为昆虫遗传转化的主要策略。本文就锌指核酸酶、类转录激活因子式核酸酶和CRISPR/Cas技术的基本原理及其在昆虫中的应用做一简介,为今后利用基因组编辑技术进行昆虫遗传转化提供些许参考。  相似文献   

2.
灵长类动物因与人类在遗传、生理和神经功能上的高度相似性而使其在生物医学研究领域中占有非常重要的地位。构建人类疾病的灵长类动物模型,是研究疾病发病机理和探索潜在治疗手段的重要途径,而通过基因编辑的方法获得灵长类动物模型是研究一些遗传性疾病最可靠的方法。灵长类动物基因编辑技术先后经历了传统的转基因和精准基因打靶两个时代。对近年来灵长类动物基因编辑研究进行综述,重点介绍最新的利用核酸酶技术进行精准基因编辑的研究进展。  相似文献   

3.
4.
5.
6.
规律成簇间隔的短回文序列(Clustered regularly interspaced short palindromic repeats,CRISPR)是细菌和古菌中的获得性免疫系统,利用该系统能定点进行基因编辑。最近,科学家发现了新的CRISPR-associated (Cas)蛋白,其中由Cas12a介导的基因编辑能显著降低脱靶率。文中对CRISPR/Cas系统的发现历史、组成和分类、工作原理进行概述,并总结了该系统的最新研究进展及在斑马鱼Danio rerio中的应用。  相似文献   

7.
基因编辑是指通过核酸酶对靶基因进行定点改造,实现特定DNA的定点敲除、敲入以及突变等,最终下调或上调基因的表达,以使细胞获得新表型的一种新型技术。基因编辑技术已被广泛运用于基因结构与功能的研究和多种细胞的基因工程改造,为疾病模型的建立、动植物新品种的培育及基因治疗等的研究提供新的手段。基因编辑技术主要包括锌指核酸酶技术(ZFN)、转录激活子样效应因子技术(TALEN)和成簇的规律间隔的短回文重复序列/CRISPR相关蛋白 (CRISPR/Cas) 系统等。本文将对3种基因编辑技术的原理、运用及其最新进展进行综述,以期为相关技术及其运用的研究提供参考。  相似文献   

8.
CRISPR/Cas9作为热门的基因编辑技术,已广泛用于模式生物、经济动、植物及部分海洋生物的基因功能检测和遗传改良,在海洋藻类中亦有成功运用的实例。介绍了CRISPR/Cas9基因编辑方法及其在藻类中的最新进展,分析基因编辑技术在应用中存在的问题,现有的研究成果对该技术在大型海藻中应用的指导意义,以期为CRISPR/Cas9在海洋大型海藻中的应用提供参考。  相似文献   

9.
巴斯德毕赤酵母是一种重要的蛋白表达系统,基因编辑技术作为代谢工程的基本工具,对于毕赤酵母的代谢改造十分重要。近十年基因编辑技术发展迅速,除传统的同源重组和Cre/loxP重组外,相继出现了许多新的基因编辑技术,例如ZFN、TALEN和CRISPR/Cas9等,这些技术的出现使基因编辑更加简便高效。本文对毕赤酵母中传统和新型基因编辑技术的原理应用和研究进展进行了简要综述,并结合相关领域的发展对毕赤酵母基因编辑技术的发展进行了展望。  相似文献   

10.
11.
利用基因组编辑技术可以对生物基因组特定位点进行人工修饰,研究相关基因的功能,进而应用于基础研究和临床治疗方面。序列特异性的DNA结合结构域与非特异性的DNA修饰结构域组合而成的人工酶是基因组编辑工具的重要组成部分。主要介绍了锌指核酸酶(ZFNs)、转录激活样效应因子核酸酶(TALEN)、归巢核酸内切酶(Meganucleases)和成簇间隔短回文重复(CRISPR)4种基因组编辑技术的特点、原理、构建方法及应用,为相关的研究和应用提供参考。  相似文献   

12.
13.
基因组编辑技术是进行功能基因组研究的重要工具.锌指核酸酶技术(ZFNs)、类转录激活因子核酸酶技术(TALENs)以及CRISPR/Cas技术是近年来发展起来的3种主流基因组编辑技术.这3种基因组编辑技术的原理都是通过在生物基因组特定位点制造DNA断裂损伤,从而激活机体自身的DNA损伤修复机制,在此过程中引发各种变异.ZFNs是最早发展的通用基因组编辑技术,可用以实施定点敲除和定点敲入变异,但ZFNs技术的发展受限于构建难度大、成本高等缺点.TALENs技术在ZFNs基础上发展而来,较ZFNs技术而言,TALENs技术具备构建灵活度高、成本低等优势.不同于ZFNs与TALENs技术,CRISPR/Cas技术具有独特的DNA靶向机制,这种机制使其非常适合进行多位点编辑.目前,3种技术都在多种物种中成功测试,例如小鼠、斑马鱼、果蝇、线虫和家蚕.在后基因组时代,这些新技术工具必将在未来功能基因组研究中发挥重大作用.  相似文献   

14.
RNA编辑,即通过碱基的插入、删除和替换对RNA进行的转录后加工过程,这一表观遗传现象也被认为是在RNA水平上对遗传信息进行修复的一种修正机制.本文主要综述了目前植物中基于PPR基因家族等编辑复合体以及动物中关于CRISPR/Cas系统的两种RNA编辑系统,并介绍了RNA编辑在植物生长发育过程中的重要作用,并展望了RN...  相似文献   

15.
16.
17.
Exploitation of custom-designed nucleases to induce DNA double-strand breaks (DSBs) at genomic locations of choice has transformed our ability to edit genomes, regardless of their complexity. DSBs can trigger either error-prone repair pathways that induce random mutations at the break sites or precise homology-directed repair pathways that generate specific insertions or deletions guided by exogenously supplied DNA. Prior editing strategies using site-specific nucleases to modify the Caenorhabditis elegans genome achieved only the heritable disruption of endogenous loci through random mutagenesis by error-prone repair. Here we report highly effective strategies using TALE nucleases and RNA-guided CRISPR/Cas9 nucleases to induce error-prone repair and homology-directed repair to create heritable, precise insertion, deletion, or substitution of specific DNA sequences at targeted endogenous loci. Our robust strategies are effective across nematode species diverged by 300 million years, including necromenic nematodes (Pristionchus pacificus), male/female species (Caenorhabditis species 9), and hermaphroditic species (C. elegans). Thus, genome-editing tools now exist to transform nonmodel nematode species into genetically tractable model organisms. We demonstrate the utility of our broadly applicable genome-editing strategies by creating reagents generally useful to the nematode community and reagents specifically designed to explore the mechanism and evolution of X chromosome dosage compensation. By developing an efficient pipeline involving germline injection of nuclease mRNAs and single-stranded DNA templates, we engineered precise, heritable nucleotide changes both close to and far from DSBs to gain or lose genetic function, to tag proteins made from endogenous genes, and to excise entire loci through targeted FLP-FRT recombination.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号