首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 372 毫秒
1.
Mannan components of C. albicans (5 mg/kg, i.p.) and S. cerevisiae (2.5 mg/kg, i.p.) cell walls produced pyrogenic responses which were completely inhibited by indomethacin (5 mg/kg, s.c.) pretreatment in rats. A non-selective NOS inhibitor, L-NAME (10 mg/kg, s.c.), also inhibited the pyrogenic effectiveness of C. albicans mannan, whereas it was ineffective on the fever induced by S. cerevisiae mannan. A selective elevation in the serum TNF-alpha levels was observed at the initial phase of the fever due to S. cerevisiae mannan, whereas there was no significant change on the serum levels of TNF-alpha, IL-1beta and IFN-gamma during the latent period or at the initial phase of the fever induced by C. albicans mannan. Injections of N-linked and/or O-linked oligomannosides of the either mannan did not cause any significant change in the body temperature and serum cytokine levels. These data suggest that the mannan components of C. albicans and S. cerevisiae cell walls produce a prostaglandin-dependent fever in rats. The initial signal for fever seems to be different for each mannan. Data also indicate that integrity of the mannans is necessary for the pyrogenic response.  相似文献   

2.
CANTASTIM is a second generation bacterial immunomodulator. The aim of this study was to examine the mechanism by which bacterial immunomodulator CANTASTIM induces production of inflammatory cytokines in monocytes/macrophages. Proinflammatory cytokines were induced in PMA-differentiated THP-1 cells by stimulation with TLR agonists and CANTASTIM in the presence or absence of anti-TLR blocking antibodies or isotype matched control antibodies. Also, RNA interference was used to knockdown TLR2 or TLR4 expression in PMA-differentiated THP-1 cells before stimulation. As expected, induction of TNF-alpha and IL-6 by TLR4 agonist LPS was inhibited in a significant manner by anti-TLR4 but not by anti-TLR2 antibody. Unexpectedly, treatment with anti-LR2 blocking antibody inhibited only IL-6 production induced by Pam3CSK4 while the level of TNF-alpha was unchanged. When cells were stimulated by TLR2 agonist heat-killed Listeria monocytogenes the release of TNF-alpha was significantly attenuated by anti-TLR2 antibodies. Silencing of TLR2 led to a statistically significant inhibition of TNF-alpha secretion induced by TLR2 agonist while siRNA silencing of TLR4 did not affect the response to TLR2 agonist. Cells exposed to CANTASTIM produced significant levels of pro-inflammatory cytokines but the levels were lower than LPS-stimulated cells. Production of both cytokines was inhibited by treatment with anti-TLR2 blocking antibody and not by anti-TLR4 antibody. Silencing of TLR2 led to a statistically significant inhibition of TNF-a secretion induced by CANTASTIM while silencing of TLR4 had no effect on the response to CANTASTIM. These results support the hypothesis that CANTASTIM may exert its immunomodulatory and adjuvant activities through interaction of its bacterial components with TLR2.  相似文献   

3.
The 52 kD myeloid membrane glycoprotein CD14 represents the receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein (LBP); it is involved in LPS induced tumor necrosis factor-alpha production. Expression of CD14 increases in monocytes differentiating into macrophages, and it is reduced by rIFNg in monocytes in vitro. In the present study CD14 membrane antigen expression was investigated in cultures of human mononuclear leucocytes (PBL), in elutriated, purified monocytes, and in blood monocyte derived Teflon cultured macrophages. Cells were incubated for 15 or 45 h with rIL-1, rIL-2, rIL-3, rIL-5, rIL-6, rTNFa, rGM-CSF, rM-CSF, rTGFb1, rIFNa, lipopolysaccharide (LPS), and, as a control, rIFNg. The monoclonal antibodies Leu-M3 and MEM 18 were used for labelling of CD14 antigen by indirect immunofluorescence and FACS analysis of scatter gated monocytes or macrophages. IFNg concentrations were determined in PBL culture supernatants by ELISA. rIFNa and rIL-2 reduced CD14 in 15 and 45 h PBL cultures, an effect mediated by endogenous IFNg, since it was abolished by simultaneous addition of an anti-IFNg antibody. rIFNa and rIL-2 were ineffective in purified monocytes or macrophages. rIL-4 strongly reduced CD14 in PBL and purified monocytes after 45 h, whereas in macrophages the decrease was weak, although measurable after 15 h. The other cytokines investigated did not change CD14 antigen expression. Cycloheximide alone reduced CD14, but when added in combination with rIFNg the effect on CD14 downregulation was more pronounced. The effect of rIFNg on CD14 in PBL cultures was dose-dependently inhibited by rIL-4 and this inhibition is probably due to an IL-4 mediated blockade of IFNg secretion. LPS at a low dose increased CD14, at a high dose it produced a variable decrease of CD14 in PBL, which was probably due to LPS induced IFNg secretion. LPS strongly enhanced CD14 in 45 h cultures of purified monocytes. The results, showing that CD14 antigen expression is upregulated by LPS and downregulated by rIFNg and rIL-4, suggest that the LPS-LBP receptor is involved in the feedback response of IFNg and IL-4 to LPS stimulation.  相似文献   

4.
We used flow cytometry to determine how LPS-binding protein (LBP) effects the binding of fluorescein-labeled LPS to human monocytes via receptor-dependent mechanisms. The addition of human, rabbit, mouse, or FCS strikingly increased the binding of LPS to monocytes compared with controls incubated in serum-free medium. This binding was totally prevented by preincubation of monocytes with MY4, an anti-CD14 mAb, or by enzymatic removal of CD14 from monocytes. Depletion of LBP from rabbit serum with anti-LBP antibodies also produced a similar suppression. Solutions of albumin did not support the enhanced binding observed in serum but the addition of purified rabbit LBP to albumin solutions resulted in binding similar to that observed in serum-containing medium. When type-specific anti-LPS mAb was added to human serum, LPS binding to monocytes occurred but was only partly inhibited by anti-CD14 mAb, suggesting that receptors other than CD14 (presumably Fc or complement receptors) were involved. Serum increased by 100- to 1000-fold the sensitivity of monocytes to the triggering by LPS resulting in TNF secretion. TNF secretion was inhibited by anti-CD14 mAb up to 100 ng/ml of LPS and by anti-LPS mAb up to 1 to 10 ng/ml. The inhibition of TNF secretion by anti-LPS mAb appeared to be the result of directing LPS to monocyte receptors other than CD14. In contrast, in medium containing normal as well as acute serum and in the absence of anti-LPS antibodies, the binding of LPS to monocytes and the triggering of TNF secretion appeared to be mediated mainly by interactions between CD14 and LBP-LPS complexes.  相似文献   

5.
P. marneffei is a thermal dimorphic fungus which causes penicilliosis, an opportunistic infection in immunocompromised patients in South and Southeast Asia. Little is known about the innate immune response to P. marneffei infection. Therefore, the initial response of macrophages to P. marneffei conidia was evaluated by us. Adhesion between monocytes from healthy humans and fungal conidia was examined and found to be specifically inhibited by MAbs against PRR, such as MR, (TLR)1, TLR2, TLR4, TLR6, CD14, CD11a, CD11b, and CD18. To study the consequences of these interactions, cytokines were also examined by ELISA. Binding of P. marneffei conidia to monocytes was significantly inhibited, in a dose-dependent manner, by MAbs against MR, TLR1, TLR2, TLR4, TLR6, CD14, CD11b and CD18. When monocytes were co-cultured with the conidia, there was an increase in the amount of surface CD40 and CD86 expression, together with TNF-α and IL-1β production, compared to unstimulated controls. In assays containing anti-TLR4 or anti-CD14 antibody, reduction in the amount of TNF-α released by monocytes stimulated with P. marneffei conidia was detected. In addition, it was found that production of TNF-α and IL-1β from adherent peripheral blood monocytes was partially impaired when heat-inactivated autologous serum, in place of untreated autologous serum, was added to the assay. These results demonstrate that various PRR on human monocytes participate in the initial recognition of P. marneffei conidia, and the engagement of PRR could partly initiate proinflammatory cytokine production.  相似文献   

6.
The ornithine-containing lipids (OL)-induced cytokine production pattern in macrophage-like J774.1 and RAW 264.7 cells was different from that in the peritoneal macrophages previously reported. OLs, as well as lipopolysaccharide (LPS) of Escherichia coli, strongly induced tumor necrosis factor (TNF) alpha but not interleukin (IL)-1beta in J774.1 cells. In the RAW cells, IL-1beta, TNF-alpha and prostaglandin E(2) were strongly induced by the OLs and LPS. OL- and serine-glycine-containing lipid (SGL)-induced TNF-alpha production in J774.1 and RAW 264.7 cells required serum. However, in CD14-deficient LR-9 cells, TNF-alpha was not induced by the OLs in the presence or absence of serum. OLs and a SGL almost completely inhibited the binding of (125)I-LPS to J774.1 cells. These results suggested that OLs and SGL activate macrophages via the CD14-dependent pathway.  相似文献   

7.
Human Toll like receptor (TLR) 2 has been implicated as a signaling receptor for LPS from Gram-negative bacteria and cell wall components from Gram-positive organisms. In this study, we investigated whether TLR2 can signal cell activation by the heat-killed group B streptococci type III (GBS) and Listeria monocytogenes (HKLM). HKLM, but not GBS, showed a time- and dose-dependent activation of Chinese hamster ovary cells transfected with human TLR2, as measured by translocation of NF-kappaB and induction of IL-6 production. A mAb recognizing a TLR2-associated epitope (TL2.1) was generated that inhibited IL-6 production from Chinese hamster ovary-TLR2 cells stimulated with HKLM or LPS. The TL2.1 mAb reduced HKLM-induced TNF production from human monocytes by 60%, whereas a CD14 mAb (3C10) reduced the TNF production by 30%. However, coadministrating TL2.1 and 3C10 inhibited the TNF response by 80%. In contrast to this, anti-CD14 blocked LPS-induced TNF production from monocytes, whereas anti-TLR2 showed no inhibition. Neither TL2.1 nor 3C10 affected GBS-induced TNF production. These results show that TLR2 can function as a signaling receptor for HKLM, possibly together with CD14, but that TLR2 is unlikely to be involved in cell activation by GBS. Furthermore, although LPS can activate transfected cell lines through TLR2, this receptor does not seem to be the main transducer of LPS activation of human monocytes. Thus, our data demonstrate the ability of TLR2 to distinguish between different pathogens.  相似文献   

8.
Cysteine proteinases (gingipains) elaborated from Porphyromonas gingivalis exhibit enzymatic activities against a broad range of host proteins and are considered key virulence factors in the onset and development of adult periodontitis and host defense evasion. In this study, we examined the ability of arginine-specific gingipains (high molecular mass Arg-specific gingipain (HRGP) and Arg-specific gingipain 2) and lysine-specific gingipain (KGP) to cleave monocyte CD14, the main receptor for bacterial cell surface components such as LPS. Binding of anti-CD14 mAb MY4 to human monocytes was almost completely abolished by 0.3 microM HRGP and KGP treatments for 15 min, and 1 microM RGP2 for 30 min. In contrast, the expressions of Toll-like receptor 4, and CD18, CD54, CD59, and HLA-A, -B, -C on monocytes were slightly increased and decreased, respectively, by 0. 3 microM HRGP and KGP. This down-regulation resulted from direct proteolysis, because 1) gingipains eliminated MY4 binding even to fixed monocytes, and 2) CD14 fragments were detected in the extracellular medium by immunoblot analysis. Human rCD14 was degraded by all three gingipains, which confirmed that CD14 was a substrate for gingipains. TNF-alpha production by monocytes after HRGP and KGP treatments was decreased at 1 ng/ml, but not at 20 microg/ml LPS, indicating that gingipains inhibited a CD14-dependent cell activation. These results suggest that gingipains preferentially cleave monocyte CD14, resulting in attenuation of the cellular recognition of bacteria, and as a consequence sustain chronic inflammation.  相似文献   

9.
The lung collectin surfactant protein A (SP-A) has both anti-inflammatory and prophagocytic activities. We and others previously showed that SP-A inhibits the macrophage production of tumor necrosis factor (TNF)-alpha stimulated by the gram-negative bacterial component LPS. We propose that SP-A decreases the production of proinflammatory cytokines by alveolar macrophages via a CD14-independent mechanism. SP-A inhibited LPS-simulated TNF-alpha production in rat and mouse macrophages in the presence and absence of serum (72% and 42% inhibition, respectively). In addition, SP-A inhibited LPS-induced mRNA levels for TNF-alpha, IL-1 alpha, and IL-1 beta as well as NF-kappa B DNA binding activity. SP-A also diminished ultrapure LPS-stimulated TNF-alpha produced by wild-type and CD14-null mouse alveolar macrophages by 58% and 88%, respectively. Additionally, SP-A inhibited TNF-alpha stimulated by PMA in both wild-type and TLR4-mutant macrophages. These data suggest that SP-A inhibits inflammatory cytokine production in a CD14-independent manner and also by mechanisms independent of the LPS signaling pathway.  相似文献   

10.
Proinflammatory cytokines produced by monocytes, like Interleukin-6 (IL-6), Interleukin-8 (IL-8), and tumor necrosis factor (TNF-alpha) are known for their pivotal role in the initiation of the inflammatory response following cardiopulmonary bypass (CPB). Catecholamines like epinephrine (Epi) and norepinephrine (Nor) are often necessary to stabilize the cardiac function in the early postoperative period and may influence the cytokine expression in monocytes. In this study we investigated the effects of Epi and Nor on IL-6, IL-8 and TNF-alpha expression in human monocytes stimulated with lipopolysaccharide (LPS) in whole blood, analyzed intracellularly by flow cytometry. Kinetics of intracellular proinflammatory cytokine production and LPS ED(50) were obtained. To simulate different stages of inflammation in vivo, varying concentrations of LPS (0.2 ng/ml, 1 ng/ml and 10 ng/ml) were used for stimulation. After a stimulation with LPS TNF-alpha was the first produced cytokine, followed by IL-8 and IL-6. All cytokines peaked from 3 h to 6 h. Epi and Nor had comparable effects on the expression of IL-6, IL-8 and TNF-a in monocytes. Both inhibited IL-6 and TNF-alpha expression in a concentration dependent manner whereas IL-8 expression remained unchanged. We conclude that monocytes are targets for Epi and Nor concerning their cytokine expression. The inhibiting effects of Nor and Epi were almost identical for all cytokines. Cytokine expression was affected most at low LPS concentrations.  相似文献   

11.
Cytokines play a pivotal role in the pathogenesis of septic shock. Proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) stimulate the progression of septic shock whereas the anti-inflammatory cytokine IL-10 has counterregulative potency. The amino acid glycine (GLY) has been shown to protect against endotoxin shock in the rat by inhibiting TNF-alpha production. In the current study we investigated the role of GLY on lipopolysaccharide (LPS) -induced cell surface marker expression, phagocytosis, and cytokine production on purified monocytes from healthy donors. GLY did not modulate the expression of HLA-DR and CD64 on monocytes, whereas CD11b/CD18 expression (P<0.05) and E. coli phagocytosis (P<0.05) decreased significantly. GLY decreased LPS-induced TNF-alpha production (P<0.01) and increased IL-10 expression of purified monocytes. Similarly, in a whole blood assay, GLY reduced TNF-alpha (P<0.0001) and IL-1beta (P<0.0001) synthesis and increased IL-10 expression (P<0.05) in a dose-dependent manner. The inhibitory effects of GLY were neutralized by strychnine, and the production of IL-10 and TNF-alpha was augmented by anti-IL-10 antibodies. Furthermore, GLY decreased the amount of IL-1beta and TNF-alpha-specific mRNA. Our data indicate that GLY has a potential to be used as an additional immunomodulatory tool in the early phase of sepsis and in different pathophysiological situations related to hypoxia and reperfusion.  相似文献   

12.
Although urinary trypsin inhibitor (UTI) has been shown to inhibit tumor necrosis factor (TNF)-alpha- production, the detailed mechanism(s) remains unclear. This study was undertaken to elucidate the molecular mechanism(s) underlying this inhibitory effect in monocytes in vitro and in rats given lipopolysaccharide (LPS). TNF-alpha production by monocytes stimulated with LPS (100 ng/ml) was inhibited by UTI at concentrations higher than 100 U/ml. Expression of early growth response factor-1 (Egr-1) and phosphorylation of extracellular signal-regulated protein kinases 1/2 in monocytes stimulated with LPS were inhibited by UTI. UTI (50,000 U/kg i.v.) inhibited LPS (5 mg/kg i.v.)-induced increases in lung tissue levels of Egr-1, TNF-alpha mRNA, and TNF-alpha in rats. UTI inhibited LPS-induced hypotension by inhibiting pulmonary induction of inducible nitric oxide synthase (iNOS). We previously demonstrated that anti-TNF-alpha antibody and aminoguanidine, a selective inhibitor of iNOS, reduced LPS-induced hypotension in this animal model. Furthermore, we also reported that reduction of LPS-induced coagulation abnormalities in rats did not affect inflammatory responses and hypotension in this animal model. Taken together, these observations strongly suggested that UTI inhibited LPS-induced production of TNF-alpha by inhibiting activation of the extracellular signal-regulated protein kinases 1/2-Egr-1 pathway in monocytes, which might at least partly contribute to reduction of hypotension through inhibition of iNOS induction in rats given LPS.  相似文献   

13.
LPS-binding protein (LBP) is a central mediator that transfers LPS to CD14 to initiate TLR4-mediated proinflammatory response. However, a possibility of another LPS transfer molecule has been suggested because LBP-deficient mice showed almost normal inflammatory response after LPS injection. In this study, we describe the novel finding that high mobility group box 1 protein (HMGB1) recently identified as a mediator of sepsis has a function of LPS transfer for a proinflammatory response. We used ELISA and surface plasmon resonance to show that HMGB1 binds LPS in a concentration-dependent manner and that the binding is stronger to lipid A moiety than to the polysaccharide moiety of LPS. This binding was inhibited by LBP and polymyxin B. Using native PAGE and fluorescence-based LPS transfer analyses, we show that HMGB1 can catalytically disaggregate and transfer LPS to both soluble CD14 protein and to human PBMCs in a dose-dependent manner. However, this effect was dramatically reduced to the baseline level when HMGB1 was heat inactivated. Furthermore, a mixture of HMGB1 and LPS treatment results in a higher increase in TNF-alpha production in human PBMCs and peripheral blood monocytes than LPS or HMGB1 treatment alone or their summation. Thus, we propose that HMGB1 plays an important role in Gram-negative sepsis by catalyzing movement of LPS monomers from LPS aggregates to CD14 to initiate a TLR4-mediated proinflammatory response.  相似文献   

14.
15.
We investigated the involvement of mitogen-activated protein kinases (MAPKs) in the maturation of CD83(-) dendritic cells (DC) derived from human blood monocytes. Maturating agents such as LPS and TNF-alpha induced the phosphorylation of members of the three families of MAPK (extracellular signal-regulated kinase l/2, p46/54 c-Jun N-terminal kinase, and p38 MAPK). SB203580, an inhibitor of the p38 MAPK, but not the extracellular signal-regulated kinase l/2 pathway blocker PD98059, inhibited the up-regulation of CD1a, CD40, CD80, CD86, HLA-DR, and the DC maturation marker CD83 induced by LPS and TNF-alpha. In addition, SB203580 inhibited the enhancement of the allostimulatory capacity and partially prevented the down-regulation of FITC-dextran uptake induced by LPS and TNF-alpha. Likewise, SB203580 partially prevented the up-regulation of IL-1alpha, IL-1beta, IL-lRa, and TNF-alpha mRNA upon stimulation with LPS and TNF-alpha, as well as the release of bioactive TNF-alpha induced by LPS. DC maturation induced by the contact sensitizers 2,4-dinitrofluorobenzene and NiSO(4), as seen by the up-regulation of CD80, CD86, and CD83, was also coupled to the phosphorylation of p38 MAPK, and was inhibited by SB203580. The irritants SDS and benzalkonium chloride that do not induce DC maturation did not trigger p38 MAPK phosphorylation. Together, these data indicate that phosphorylation of p38 MAPK is critical for the maturation of immature DC. These results also suggest that p38 MAPK phosphorylation in DC may become useful for the identification of potential skin contact sensitizers.  相似文献   

16.
Recent studies have shown that commercially available recombinant human heat shock protein 60 (rhHSP60) could induce tumor necrosis factor alpha (TNF-alpha) release from macrophages and monocytes in a manner similar to that of lipopolysaccharide (LPS), e.g. via CD14 and Toll-like receptor 4 complex-mediated signal transduction pathway. In this study, we demonstrated that a highly purified rhHSP60 preparation with low endotoxin activity (designated rhHSP60-1) was unable to induce TNF-alpha release from murine macrophages at concentrations of up to 10 microg/ml. In contrast, a less purified rhHSP60 preparation (designated rhHSP60-2) was able to induce a marked TNF-alpha release at concentrations as low as 1 microg/ml. Failure of rhHSP60-1 to induce TNF-alpha release was not due to defective physical properties because rhHSP60-1 and rhHSP60-2 contained a similar amount of HSP60 as determined by SDS gels stained with Coomassie Blue and Western blots probed with an anti-rhHSP60 antibody. Both rhHSP60 preparations also had similar enzymatic activities as judged by their ability to hydrolyze ATP. Polymyxin B added in the incubation media abolished the endotoxin activity but inhibited only about 50% of the TNF-alpha-inducing activity of rhHSP60-2. However, both the endotoxin activity and the TNF-alpha-inducing activity of rhHSP60-2 were essentially eliminated after passing through a polymyxin B-agarose column that removes LPS and LPS-associated molecules from the rhHSP60 preparation. The TNF-alpha-inducing activities of both rhHSP60-2 and LPS with equivalent endotoxin activity present in rhHSP60-2 were equally sensitive to heat inactivation. These results suggest that rhHSP60 does not induce TNF-alpha release from macrophages. Approximately 50% of the observed TNF-alpha-inducing activity in the rhHSP60-2 preparation is due to LPS contamination, whereas the rest of the activity was due to the contamination of LPS-associated molecule(s).  相似文献   

17.
TNF-alpha has emerged as the major pro-inflammatory cytokine involved in the pathogenesis of rheumatoid arthritis (RA). LPS is a potent stimulator of TNF-alpha production by human monocytes. Ceramide, a structural homolog of LPS and a second messenger in the sphingomyelin signal transduction pathway has been shown to stimulate TNF-alpha production from murine macrophages. We have previously shown that GSTM, an anti-rheumatic drug inhibits LPS stimulated TNF-alpha production by normal PBMCs. We studied the ability of ceramide to stimulate TNF-alpha production by human PBMCs and the mechanism of action of GSTM on ceramide and LPS induced TNF-alpha production. LPS induced significant TNF-alpha production in PBMCs and THP-1. However, C(2) ceramide stimulated TNF-alpha production in 5 of 10 PBMCs (ceramide responder); it did not do so in the other 5 PBMCs (ceramide non-responder) or the THP-1 cell line. GSTM inhibited LPS stimulated TNF-alpha productions in PBMCs of all 5 ceramide responders both at protein and mRNA expression level. We also found that GSTM inhibited LPS induced NF-kappaB level only in ceramide responder. Thus, we for the first time report that GSTM inhibits LPS stimulated TNF-alpha production through ceramide pathway and anti-inflammatory activity of GSTM in treatment of RA may depend on its ability to inhibit NF-kappaB activation and TNF-alpha production.  相似文献   

18.
The effect of selective PDE-I (vinpocetine), PDE-III (milrinone, CI-930), PDE-IV (rolipram, nitroquazone), and PDE-V (zaprinast) isozyme inhibitors on TNF-alpha and IL-1beta production from LPS stimulated human monocytes was investigated. The PDE-IV inhibitors caused a concentration dependent inhibition of TNF-alpha production, but only partially inhibited IL-1beta at high concentrations. High concentrations of the PDE-III inhibitors weakly inhibited TNF-alpha, but had no effect on IL-1beta production. PDE-V inhibition was associated with an augmentation of cytokine secretion. Studies with combinations of PDE isozyme inhibitors indicated that PDE-III and PDE-V inhibitors modulate rolipram's suppression of TNF production in an additive manner. These data confirm that TNF-alpha and IL-1beta production from LPS stimulated human monocytes are differentially regulated, and suggest that PDE-IV inhibitors have the potential to suppress TNF levels in man.  相似文献   

19.
Proinflammatory cytokines have an important pathophysiologic role in septic shock. CD14 is involved in cytokine responses to a number of purified bacterial products, including LPS. However, little is known of monocyte receptors involved in cytokine responses to whole bacteria. To identify these receptors, human monocytes were pretreated with different mAbs and TNF-alpha was measured in culture supernatants after stimulation with whole heat-killed bacteria. Human serum and anti-CD14 Abs significantly increased and decreased, respectively, TNF-alpha responses to the Gram-negative Escherichia coli. However, neither treatment influenced responses to any of the Gram-positive bacteria tested, including group A and B streptococci, Listeria monocytogenes, and Staphylococcus aureus. Complement receptor type III (CR3 or CD18/CD11b) Abs prevented TNF-alpha release induced by heat-killed group A or B streptococci. In contrast, the same Abs had no effects when monocytes were stimulated with L. monocytogenes or S. aureus. Using either of the latter bacteria, significant inhibition of TNF-alpha release was produced by Abs to CD11c, one of the subunits of CR4. To confirm these blocking Ab data, IL-6 release was measured in CR3-, CR4-, or CD14-transfected Chinese hamster ovary cells after bacterial stimulation. Accordingly, streptococci triggered moderate IL-6 production (p < 0.05) in CR3 but not CD14 or CR4 transfectants. In contrast, L. monocytogenes and S. aureus induced IL-6 release in CR4 but not CR3 or CD14 transfectants. Collectively our data indicate that beta 2 integrins, such as CR3 and CR4, may be involved in cytokine responses to Gram-positive bacteria. Moreover, CD14 may play a more important role in responses to whole Gram-negative bacteria relative to Gram-positive ones.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号