首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Resource partitioning of sonar frequency bands in rhinolophoid bats   总被引:18,自引:0,他引:18  
Summary In the Constant Frequency portions of the orientation calls of various Rhinolophus and Hipposideros species, the frequency with the strongest amplitude was studied comparatively. (1) In the five European species of the genus Rhinolophus call frequencies are either species-specific (R. ferrumequinum, R. blasii and R. euryale) or they overlap (R. hipposideros and R. mehelyi). The call frequency distributions are approximately 5–9 kHz wide, thus their ranges spead less than ±5% from the mean (Fig. 1). Frequency distributions are considerably narrower within smaller geographic areas. (2) As in other bat groups, call frequencies of the Rhinolophoidea are negatively correlated with body size (Fig. 3). Regression lines for the genera Rhinolophus and Rhinolophus, species from dryer climates have on the average higher call frequencies than species from tropical rain forests. (4) The Krau Game Reserve, a still largely intact rain forest area in Malaysia, harbours at least 12 syntopic Rhinolophus and Hipposiderso species. Their call frequencies lie between 40 and 200 kHz (Fig. 2). Distribution over the available frequency range is significantly more even than could be expected from chance alone. Two different null hypotheses to test for random character distribution were derived from frequency-size-relations and by sampling species assemblages from a species pool (Monte Carlo method); both were rejected. In particular, call frequencies lying close together are avoided (Figs. 4, 5). Conversely, the distribution of size ratios complied with a corresponding null hypothesis. This even distribution may be a consequence of resource partitioning with respect to prey type. Alternatively, the importance of these calls as social signals (e.g. recognition of conspecifics) might have necessitated a communication channel partitioning.  相似文献   

3.
In this study we measure and classify frequency modulation patterns in echolocation signals of two species of bats. By using the derivative of an exponential model fitted to pulses emitted by Pipistrellus pipistrellus and Myotis myotis, we show that the modulation functions differ fundamentally between the two species and also vary within each species. This variation makes it unlikely that pulse design and the concomitant modulation pattern can be explained by a single common principle as previously suggested.  相似文献   

4.
Echolocating bats perceive the world through sound signals reflecting from the objects around them. In these signals, information is contained about reflector location and reflector identity. Bats are able to extract and separate the cues for location from those that carry identification information. We propose a model based on Wiener deconvolution that also performs this separation for a virtual system mimicking the echolocation system of the lesser spearnosed bat, Phyllostomus discolor. In particular, the model simultaneously reconstructs the reflected echo signal and localizes the reflector from which the echo originates. The proposed technique is based on a model that performs a similar task based on information from the frog’s lateral line system. We show that direct application of the frog model to the bat sonar system is not feasible. However, we suggest a technique that does apply to the bat biosonar and indicate its performance in the presence of noise.  相似文献   

5.
Aim To reconstruct the biogeographical history of New World emballonurid bats (tribe Diclidurini). Although bats are the second most species‐rich order of mammals, they have not contributed substantially to our understanding of the historical biogeography of mammals in the Neotropics because of a poor fossil record. In addition, being the only group of mammals that fly, bats typically have large distributions with relatively few species endemic to restricted areas that are amenable to vicariant biogeographical approaches. Location Central and South America. Methods Phylogenetic analysis for comparing trees (PACT) is a new algorithm that incorporates all spatial information from taxon area cladograms into a general area cladogram. There were nine biogeographical areas identified in Central and South America for New World emballonurid bats. Molecular dating was used to incorporate the temporal aspect of historical biogeography. This method was compared with dispersal–vicariance analysis (DIVA), which assumes vicariance as the default mode of speciation. Results Of the 45 speciation events in a fully resolved phylogeny, eight that were hypothesized by DIVA as vicariance were considered by PACT as two peripheral isolations and six within‐area events. DIVA was less parsimonious because it required six more post‐speciation dispersal events in addition to the 73 hypothesized by PACT. DIVA reconstructed a widely distributed ancestor, suggesting that most dispersal events occurred earlier, whereas the ancestral area for PACT based on character optimization was the Northern Amazon, suggesting that dispersal events were more recent phenomena. Main conclusions The general area cladogram from PACT indicated that within‐area events, and not vicariance, provide the major mode of speciation for New World emballonurid bats. There was no biological evidence supporting or rejecting sympatric speciation in New World emballonurid bats. However, the geological history, combined with fluctuations in temperature and sea level, suggested within‐area speciation in a changing and heterogeneous environment in the Northern Amazon during the Miocene. This scenario is similar to the taxon‐pulse hypothesis of biotic diversification, which posits repeated episodes of range expansions and contractions from a stable core area such as the Guiana Shield within the Northern Amazon.  相似文献   

6.
食鱼蝙蝠形态和行为特化研究   总被引:1,自引:0,他引:1  
总结了食鱼蝙蝠种类、分布 ,及其形态结构、回声定位功能和捕食行为的研究成果。比较食鱼蝙蝠与近水面“拖网式”食虫蝙蝠在形态、回声定位信号及捕食行为方面的异、同 ,推测食鱼蝙蝠起源于“拖网式”食虫蝙蝠类 ;体形和回声定位信号的几种特异性是捕食行为进化压力 ,而环境是决定因素。  相似文献   

7.
Echolocating bats are able to orientate, navigate and forage without visual cues. To probe the role of vision in bats, we studied the visual opsin genes from the echolocating little brown bat (Myotis lucifugus). Short-wavelength sensitive (SWS1) opsin, middle/long-wavelength sensitive (M/LWS) opsin and rhodopsin cDNA sequences were identified from the Ensembl database and validated by the sequencing of genomic DNA. We retrieved the published orthologous genes from eleven additional representative species of mammals from GenBank and conducted an evolutionary analysis. We found that the M/LWS opsin and rhodopsin genes were both under strong purifying selection, whereas the SWS1 opsin gene has undergone positive selection at two amino acid sites and one lineage, though the main evolutionary force is still purifying selection. Two-ratio model of the SWS1 opsin gene revealed that the ω ratio for the little brown bat lineage was nearly three times lower than the background ratio, suggesting a much stronger functional constraint. Our relative rate tests show the little brown bat has a lower nonsynonymous substitution rate than those in other mammals (on average 32% lower) for the SWS1 opsin gene. However, no such significant differences were detected for the M/LWS opsin and rhodopsin genes. The results of the relative ratio tests are consistent with that of tests for selection, showing a history of purifying selection on the little brown bat opsin genes. These findings suggest a functional role of vision in the little brown bat despite being nocturnal and using echolocation. We speculate that this echolocating bat may be able to use visual cues to orientate, navigate and forage at night, to discriminate color under moonlight and starlight conditions, or to avoid predation by diurnal raptors.  相似文献   

8.
9.
The ‘social microbiome’ can fundamentally shape the costs and benefits of group-living, but understanding social transmission of microbes in free-living animals is challenging due to confounding effects of kinship and shared environments (e.g. highly associated individuals often share the same spaces, food and water). Here, we report evidence for convergence towards a social microbiome among introduced common vampire bats, Desmodus rotundus, a highly social species in which adults feed only on blood, and engage in both mouth-to-body allogrooming and mouth-to-mouth regurgitated food sharing. Shotgun sequencing of samples from six zoos in the USA, 15 wild-caught bats from a colony in Belize and 31 bats from three colonies in Panama showed that faecal microbiomes were more similar within colonies than between colonies. To assess microbial transmission, we created an experimentally merged group of the Panama bats from the three distant sites by housing these bats together for four months. In this merged colony, we found evidence that dyadic gut microbiome similarity increased with both clustering and oral contact, leading to microbiome convergence among introduced bats. Our findings demonstrate that social interactions shape microbiome similarity even when controlling for past social history, kinship, environment and diet.  相似文献   

10.
Summary Bats of the species Rhinolophus rouxi, Hipposideros lankadiva and Eptesicus fuscus were trained to discriminate between two simultaneously presented artificial insect wingbeat targets moving at different wingbeat rates. During the discrimination trials, R. rouxi, H. lankadiva and E. fuscus emitted long-CF/FM, short-CF/FM and FM echolocation sounds respectively. R. rouxi, H. lankadiva and E. fuscus were able to discriminate a difference in wingbeat rate of 2.7 Hz, 9.2 Hz and 15.8 Hz, respectively, between two simultaneously presented targets at an absolute wingbeat rate of 60 Hz, using a criterion of 75% correct responses.The performance of the different bat species is correlated with the echolocation signal design used by each species, particularly with the presence and relative duration of a narrowband component preceding a broadband FM component. These results provide behavioral evidence supporting the hypothesis that bats that use CF/FM echolocation sounds have adaptations for the perception of insect wingbeat motion and that long-CF/FM species are more specialized for this task than short-CF/FM species.Abbreviations CF constant frequency - FM frequency modulation  相似文献   

11.
Ethanol, a potential toxin for vertebrates, is present in all fleshy fruits and its content increases as the fruit ripens. Previously, we found that the marginal value of food for Egyptian fruit bats, Rousettus aegyptiacus, decreases when its ethanol content exceeds 1%. Therefore, we hypothesized that, if ingested, food containing >1% ethanol is toxic to these bats, probably causing inebriation that will affect flight and echolocation skills. We tested this hypothesis by flying Egyptian fruit bats in an indoor corridor and found that after ingesting ethanol-rich food bats flew significantly slower than when fed ethanol-free food. Also, the ingestion of ethanol significantly affected several variables of the bats’ echolocation calls and behavior. We concluded that ethanol can be toxic to fruit bats; not only does it reduce the marginal value of food, but it also has negative physiological effects on their ability to fly competently and on their calling ability.  相似文献   

12.
环境噪声影响动物的活动及其叫声特性,已成为动物面对的一种重要选择压力。为应对噪声的干扰,多数动物类群会远离噪声区域和改变其叫声的频谱时间结构,如延长叫声持续时间、提高叫声频率等,但有些动物的活动和叫声频谱时间结构并不受环境噪声的影响。本研究在自然条件下,研究不同环境噪声强度对蝙蝠活动和回声定位声波的影响。选取噪声强度有差异的12个样点,分别录制各样点大卫鼠耳蝠、西南鼠耳蝠、亚洲长翼蝠及未知蝙蝠的回声定位声波,分析其持续时间、起始频率、峰频、终止频率和带宽,统计蝙蝠通过次数。回归分析结果显示:环境噪声强度与大卫鼠耳蝠、西南鼠耳蝠、亚洲长翼蝠及未知蝙蝠的活动无显著相关性P > 0.05),与回声定位声波的脉冲持续时间、起始频率、峰频、终止频率及带宽均不显著相关(P > 0.05)。暗示低频低强度(< 20 kHz, < 67.5 dB)的环境噪声可能对高频回声定位蝙蝠的叫声及活动没有显著影响。  相似文献   

13.
Mormoopid bat species have their echolocation system adapted to different hunting strategies. To study the corresponding mechanical properties of their inner ear, we measured distortion-product otoacoustic emissions to assess cochlear sensitivity and tuning. Mormoops blainvillii, Pteronotus macleayii and P. quadridens use frequency-modulated echolocation signals, sometimes preceded by a short narrowband signal component. Their distortion-product otoacoustic emission-threshold curves are most sensitive between 30 and 50 kHz and show no adaptation to the narrowband echolocation components. In contrast, the constant-frequency bat P. parnellii always uses long constant-frequency call components. Its inner ear is maximally sensitive at 62 kHz, the echo-frequency of the dominant constant-frequency component, and pronounced insensitivities at 61 and 93 kHz (CF2 and CF3 call frequency) are the major evolutionary change in comparison to its relatives. Furthermore, in P. parnellii, the optimum cochlear frequency separation is minimal at 62 and 93 kHz, associated with enhanced cochlear tuning, while for the other mormoopids there is no indication of enhanced tuning. The phylogeny of mormoopids, assessed by mitochondrial DNA analysis, shows a close relationship between the Pteronotus species. This suggests that major cochlear redesign, associated with the acquisition of echolocation-call specific cochlear processing in P. parnellii, has occurred within a relatively short evolutionary time scale. Accepted: 30 April 1999  相似文献   

14.
Whereas echolocation in horseshoe bats is well studied, virtually nothing is known about characteristics and function of their communication calls. Therefore, the communication calls produced by a group of captive adult greater horseshoe bats were recorded during various social interactions in a free-flight facility. Analysis revealed that this species exhibited an amazingly rich repertoire of vocalizations varying in numerous spectro-temporal aspects. Calls were classified into 17 syllable types (ten simple syllables and seven composites). Syllables were combined into six types of simple phrases and four combination phrases. The majority of syllables had durations of more than 100 ms with multiple harmonics and fundamental frequencies usually above 20 kHz, although some of them were also audible to humans. Preliminary behavioral observations indicated that many calls were emitted during direct interaction with and in response to social calls from conspecifics without requiring physical contact. Some echolocation-like vocalizations also appeared to clearly serve a communication role. These results not only shed light upon a so far widely neglected aspect of horseshoe bat vocalizations, but also provide the basis for future studies on the neural control of the production of communicative vocalizations in contrast to the production of echolocation pulse sequences.  相似文献   

15.
Habitat preference and flight activity of bats in a city   总被引:3,自引:0,他引:3  
  相似文献   

16.
Classification of insects by echolocating greater horseshoe bats   总被引:1,自引:0,他引:1  
Summary Echolocating greater horseshoe bats (Rhinolophus ferrumequinum) detect insects by concentrating on the characteristic amplitude- and frequency modulation pattern fluttering insects impose on the returning echoes. This study shows that horseshoe bats can also further analyse insect echoes and thus recognize and categorize the kind of insect they are echolocating.Four greater horseshoe bats were trained in a twoalternative forced-choice procedure to choose the echo of one particular insect species turning its side towards the bat (Fig. 1). The bats were able to discriminate with over 90% correct choices between the reward-positive echo and the echoes of other insect species all fluttering with exactly the same wingbeat rate (Fig. 4).When the angular orientation of the reward-positive insect was changed (Fig. 2), the bats still preferred these unknown echoes over echoes from other insect species (Fig. 5) without any further training. Because the untrained bats did not show any prey preference, this indicates that the bats were able to perform an aspect-anglein-dependent classification of insects.Finally we tested what parameters in the echo were responsible for species recognition. It turned out that the bats especially used the small echo-modulations in between glints as a source of information (Fig. 7). Neither the amplitudenor the frequencymodulation of the echoes alone was sufficient for recognition of the insect species (Fig. 8). Bats performed a pattern recognition task based on complex computations of several acoustic parameters, an ability which might be termed cognitive.Abbreviations AM amplitude modulation - CF constant frequency - FM frequency modulation - S+ positive stimulus - S- negative stimulus  相似文献   

17.
Resource partitioning in rhinolophoid bats revisited   总被引:5,自引:0,他引:5  
We assessed the ecomorphological structure of a guild of rhinolophoid bats in a Malaysian rainforest first described by Heller and von Helversen (1989). These authors found that the distribution of echolocation call frequencies used by 12 syntopic species was more even than expected from allometric relationships or in randomly generated communities, and that the observed minimal ratio was greater than expected by chance alone. In this study we were able to expand their guild to 15 species, but in doing so it became apparent that call frequencies might be less evenly distributed across the total frequency range than previously proposed. We replicated Heller and von Helversen’s (1989) analyses with the full 15-species complement but were unable to support their suggestion that rhinolophoid bats exhibit resource partitioning through differences in frequency bands. We adopted a multivariate approach and incorporated measures of body size and wing morphology into the analysis. We used phylogenetic autocorrelation to ensure that the species were statistically independentand principal component analysis to describe the morphological space occupied by the 15 species in the community and four additional species representing the extremes of phenotypic variation. We derived interspecific Euclidean distances and tested the mean values and SDs of these distances against those of 100 guilds of ”synthetic” species created randomly within the principal component space. The guild of Rhinolophoidea was not distributed randomly in multivariate space. Instead we found evidence of morphological overdispersion of the most similar species, which suggests niche differentiation in response to competition. Less similar species were nearer in morphological space than expected, and we suggest this is a consequence of ecological constraints on parameter combinations. Despite this underdispersion, many of the more distant neighbours were evenly rather than randomly spaced or clumped in morphospace, suggesting that, given the environmental constraints on morphology, species in this guild do experience limits to their similarity. Finally, we tested the influence of the relative abundance of species on morphological displacement, and found no evidence that abundant, spatially correlated species reduce interspecific overlap in morphological space. Received: 10 April 1999 / Accepted: 28 February 2000  相似文献   

18.
许多动物的叫声频率呈现性二态现象。蝙蝠夜间活动,主要利用声音信号导航空间、追踪猎物、传递交流信息。本研究选择成体菲菊头蝠作为研究对象,检验回声定位声波频率性二态是否有利于性别识别。研究发现,菲菊头蝠回声定位声波频率参数具有显著性别差异。播放白噪音、雄性回声定位声波及雌性回声定位声波期间,实验个体的反应叫声数量依次递减。播放白噪音、雌性回声定位声波及雄性回声定位声波后,实验个体的反应叫声数量依次递增。白噪音诱导反应叫声强度高于回声定位声波诱导反应叫声强度。研究结果表明,菲菊头蝠回声定位声波的频率参数编码发声者性别信息,有利于种群内部的性别识别。本研究暗示,回声定位声波可能在蝙蝠配偶选择中扮演一定作用。  相似文献   

19.
降雨噪声属于常见的自然噪声,由雨滴撞击物体表面产生。目前,有关降雨噪声对动物的潜在影响被普遍忽视。回声定位蝙蝠主要利用声信号在黑暗环境导航空间、探测猎物及社群交流,是开展降雨噪声影响研究的理想类群。本研究选择菲菊头蝠 (Rhinolophus pusillus)作为研究对象,检验降雨噪声是否影响蝙蝠出飞行为。我们在集群栖息地外,播放强降雨噪声、空白对照和种内回声定位声波,开展野外回放实验。利用单因素方差分析及其事后检验,评价菲菊头蝠对不同回放刺激的反应差异。研究发现,相比空白对照,强降雨噪声导致菲菊头蝠的通勤数量百分比平均降低2.82倍,回声定位脉冲数量平均减少4.86倍,集群出飞时间延长3.75 min。相比空白对照,同种回声定位声波对菲菊头蝠出飞行为的影响并不显著。研究结果证实强降雨噪声抑制菲菊头蝠的出飞行为。本研究表明,降雨引起 的噪声干扰可能是导致蝙蝠躲避降雨的重要因素,为野生蝙蝠物种保育与管理提供启示。  相似文献   

20.
A tenet of auditory scene analysis is that we can fully process only one stream of auditory information at a time. We tested this assumption in a gleaning bat, the pallid bat (Antrozous pallidus) because this bat uses echolocation for general orientation, and relies heavily on prey-generated sounds to detect and locate its prey. It may therefore encounter situations in which the echolocation and passive listening streams temporally overlap. Pallid bats were trained to a dual task in which they had to negotiate a wire array, using echolocation, and land on one of 15 speakers emitting a brief noise burst in order to obtain a food reward. They were forced to process both streams within a narrow 300 to 500 ms time window by having the noise burst triggered by the bats initial echolocation pulses as it approached the wire array. Relative to single task controls, echolocation and passive sound localization performance was slightly, but significantly, degraded. The bats also increased echolocation interpulse intervals during the dual task, as though attempting to reduce temporal overlap between the signals. These results suggest that the bats, like humans, have difficulty in processing more than one stream of information at a time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号